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We are successful in building a code that models many particle 

dynamic quantum systems by combining a semiclassical 

approximation of Feynman path integrals with parallel computing 

techniques (particle-in-cell) and numerical methods developed for 

xxi



simulating plasmas, establishing this approach as a viable technique 

for multiparticle time-dependent quantum mechanics.  Run on high-

performance parallel computers, this code applies semiclassical 

methods to simulate the time evolution of wavefunctions of many 

particles.  We describe the analytical derivation and computational 

implementation of these techniques in detail.  We present a study to 

thoroughly demonstrate the code’s fidelity to quantum mechanics, 

resulting in innovative visualization and analysis techniques.  We 

introduce and exhibit a method to address fermion particle statistics.  

We present studies of two quantum-mechanical problems: a two-

electron, one-dimensional atom, resulting in high-quality extractions 

of one- and two-electron eigenstates, and electrostatic quasi-modes 

due to quantum effects in a hot electron plasma, relevant for 

predictions about stellar evolution.  We supply discussions of 

alternative derivations, alternative implementations of the 

derivations, and an exploration of their consequences.  Source code 

is shown throughout this dissertation.  Finally, we present an 

extensive discussion of applications and extrapolations of this work, 

with suggestions for future direction.  

xxii



I. Introduction

A. Motivation

Quantum mechanics is one of the most significant scientific 

developments in the twentieth century.  The theory is also one of the most 

controversial, because it deals directly with phenomena of the universe that are 

not easily accessible by unaided human perception, yet at the same time it 

provides the essential answers that explain much of what we see around us and 

make our existence possible.  Some of the consequences of the theory, taken to 

their logical extreme, seem to defy a resemblance to reality, yet, by exercising 

the proper patience with the concepts, one can find that quantum mechanics 

possesses an internally consistent logic all its own and indeed has connections to 

our normal perceptions.  Further, one may discover familiar pieces embedded 

in a world outwardly unfamiliar.  
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Scientists of the early twentieth century were attempting to grapple with 

the fundamental nature of matter and light.  While scientists at the time were 

comfortable with a wave theory of light, derived from Maxwell’s equations, 

Planck’s theory of black body radiation, introduced in 1900,1 suggested that 

light could behave in discrete units called quanta.  In 1905, Einstein 2 extended on 

this idea to explain the photoelectric effect, which became additional evidence 

for light showing particle behavior.  

While scientists were comfortable with a particle model of matter, de 

Broglie suggested, in his 1924 thesis 3, that matter has wave properties.  In 

analogy to the phase of light quanta traveling along light rays, he proposed 

that a particle of matter gains phase as it travels.  Inspired by the similarity 

between Fermat’s principle and the principle of least action, he identified 

matter’s phase with the classical action, the integral of the Lagrangian, along the 

particle’s path.  Reinterpreting Planck’s and Einstein’s light quantization rule 

instead for matter, he then applied this idea to create a model of the atom that 

quantitatively and conceptually explained Bohr’s earlier model.  De Broglie’s 

model predicted that electrons will only be stable in particular orbits around a 

nucleus because the electron’s phase constructively interferes, resonating like a 

standing wave, on the orbit’s path.  Seeing light, normally accepted as waves, 

behave like particles allowed many to consider the notion that matter, normally 

accepted as particles, could behave like waves.  The rules governing this 

2



behavior came to be known as quantum mechanics .  

In 1926, Schrödinger published a series of papers 4 on wave mechanics, 

introducing a differential equation satisfying the de Broglie matter-wave model.   

In the same year, the WKB method 5 was developed to help find approximate 

solutions to Schrödinger’s equation.  In 1928, Van Vleck 6 generalized the WKB 

method to higher dimensions and derived the appearance of the classical action 

in a complex exponential, to be later identified as a propagator.  This work was 

among the earliest to show connections between classical mechanics and 

quantum mechanics.  

Inspired by discoveries of Dirac 7, Feynman published his seminal paper 

8 on path integrals in 1948.  The evolution of a particle could be thought to be a 

sum over possible paths whose contributions are described by a propagator.  

This paper was significant because it demonstrated explicitly how Feynman’s 

rigorous form of path integration could be used to derive quantum mechanics, 

clearly establishing the technique’s relevance as a method alternative to that of 

Schrödinger.  In fact, Feynman’s path integral was a more direct application and 

generalization of de Broglie’s idea than Schrödinger’s equation.  Also based on 

Dirac’s work, he showed how, in typical cases, a sum over these paths through 

space could be seen to simplify to a sum of classical paths.  The familiar arising 

from the unfamiliar, classical dynamics was seen to arise out of a purely 

quantum-mechanical concept, providing a clear connection between classical 

3



and quantum theory.  The term semiclassical was later coined for this apparent 

merge of classical and quantum ideas.  

Feynman later built on his path integral work. 9  In 1967, Gutzwiller 10 

used Feynman’s path integrals to rederive Van Vleck’s propagator with the 

addition of phase corrections due to caustics along periodic orbits.  These 

caustics were identified by properties of the eigenvalues of the semiclassical 

matrix, used in the determinant factor that expresses focusing in the application 

of the WKB-like methods to semiclassical paths.  

In the early 1990s, Heller and Tomosovic produced a series of articles 11-

15  demonstrating accuracy and stability of quantum-mechanical calculations 

using long classical paths based on the formula of Van Vleck, Maslov 16, and 

Gutzwiller.  Some of the techniques built upon the developments of many 

others.  17  These and related work  18,19 provided evidence, at least for single 

particle cases, for the computational viability of using many classical paths to 

answer specific questions about quantum-mechanical systems, including those 

that are chaotic.  

Meanwhile, plasma physics has developed significantly in the last half of 

the twentieth century.  Plasmas, by definition, are collections of particles under 

the influence of their mutual electromagnetic fields and following paths 

determined by classical mechanics.  Buneman and Dawson developed the 

earliest computational models of plasmas. 20-23  These systems were one-

4



dimensional “sheet models” of the plasma, and efficient computational 

techniques for such models were developed.  24  Later, these models were 

extended to two and three dimensions by introducing methods to efficiently 

solve for electrostatic fields and combining the use of grid points 25 with the 

application of a Fast Fourier Transform (FFT) algorithm 26 to solving Poisson’s 

equation in Fourier space 27.  These developments made efficient modeling of 

multidimensional plasmas possible.  

Further improvements in plasma modeling came in step with the 

evolution of computational hardware.  In particular, Particle-In-Cell (PIC) 

techniques to model plasmas on parallel computing hardware has seen great 

strides in work by Dawson, Decyk, and others. 27-33  Such plasma PIC 

simulations effectively and efficiently utilize such computational resources, 

achieving 90% parallelism and 40% of estimated peak hardware speed.  In the 

1990s, problems involving up to 2 ×108  particles on 32 ×106  grid points in three 

dimensions have become possible.  These methods are shown to be robust and 

portable  34,35, and have run successfully on a wide range of computers (e.g., 

Cray-90s, T3Ds, T3Es, SGIs, IBM SP2s, and Macintosh clusters 36).  

Dawson, familiar with the efficiency of these plasma methods to manage 

particles and calculate their classical paths, conceived of the idea to apply these 

techniques to the classical paths in the semiclassical methods referred to by 

Heller and Tomsovic 13.  If we assume thousands of classical paths could be 

5



used to evolve a system of one quantum particle, then could millions of classical 

paths be used to evolve a system of hundreds, or perhaps thousands, of 

quantum particles?  

If successful, such a code could model scores of phenomena where 

quantum effects are important and answer some of the most difficult questions 

involving quantum mechanics.  This modeling method would allow a detailed 

investigation of optical properties, ionization potential, conductance, and a host 

of other experimentally determined material properties.  This tool could be 

used for the design and physical understanding of devices where quantum 

mechanics is important.  Ultimately, with the incorporation of multiple 

dimensions, spin phenomena, and electromagnetism, this method would be 

able to model atoms, chemical reactions, quantum electronics, solid-state 

physics, and a multitude of other addressable physical problems.  Cross-

pollinated from plasma computation and semiclassical and quantum theory, 

this idea and its potential implications are the motivation of this work.  

B. Existing Methods

Other methods that address quantum behavior exist, varying in 

complexity and accuracy.  Among the candidates are mean-field methods and 

their extensions applied to solutions determined using the Schrödinger 

6



equation, usually in a finite-difference or FFT form. 37-39  Other methods exist 

that approximate the particles as Gaussian wavepackets.  Some use a “frozen” 

Gaussians, i.e., those of fixed width, 40 to evolve a wavefunction, while others 

use Gaussians with parameters that change in response to the system. 41  

Finally, many applications of semiclassical methods and their derivatives 

have been accomplished.  These are usually directed at particular properties of a 

quantum system, most commonly the energy spectrum, using a wide variety 

of approaches. 11,13,15,17,19,42-50  Some have met with great success, and some 

are limited in quality for long time scales.  The author finds the reference by 

Schulman 17 to continue to be an excellent authority on path integration, while 

other references 51 reflect more recent work.  

Computational application of semiclassical methods most commonly use 

the Van Vleck-Gutzwiller-Maslov propagator.  For example, based on work by 

Heller 52, Simontti et al 53 have developed clever methods for solving for time-

independent eigenstates of two-dimensional billiard-type quantum systems.  

They focus on constructing the eigenstate data at the boundary of the system 

using a superposition of plane waves determined by segments of periodic 

classical orbits they locate in the system.  Their methods use the Van Vleck-

Gutzwiller-Maslov propagator to determine relevant properties of these 

periodic orbits.  They then use Green’s theorem to derive the interior of the 

eigenstate using the boundary information.  Other work on time-dependent 
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propagation of wavefunctions using classical paths and that propagator are rare 

and meet with limited success. 11  

To the author’s knowledge, the work presented in this dissertation is the 

first to directly use classical paths to accurately propagate time-dependent 

quantum wavefunctions.  In this work, the author derives a propagator directly 

from basic quantum mechanics and Feynman path integrals.  This propagator is 

designed for the computational time-dependent evolution of dynamic 

discretized wavefunctions.  Its derivation is guided by the form of the Van 

Vleck propagator, Gutzwiller’s work, and a section of Chapter 14 of Schulman 

17 .  Otherwise, this propagator, its development, implementation, study, and 

application are new and not found in previous literature.  This work is also the 

first to use these methods to simulate the dynamics of many (i.e., hundreds) 

mutually interacting quantum wavefunctions.  

C. Outline

This dissertation is an exposition of methods used to combine the 

semiclassical methods for solving quantum-mechanical problems with 

computational techniques from plasma PIC simulations for implementation on 

parallel computers.  It is meant to serve as a guide for future use and 

development of both the existing quantum PIC code and any future codes 
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using similar techniques.  These chapters show that this work contains a highly 

unique blend of quantum mechanics, classical mechanics, integration methods, 

numerical methods, parallel computing techniques, and verification and 

validation techniques.  

Chapter II provides the theoretical foundation of the methods used to 

evolve quantum-mechanical wavefunctions.  Chapter III describes how these 

equations were implemented in the actual code, defining and presenting each of 

its parts.  Chapter IV presents and builds on a study, using basic quantum 

mechanics, applied to validate the quantum PIC code and demonstrate its 

capabilities.  Chapter V presents an application of the quantum PIC code to the 

one-dimensional atom, and Chapter VI shows the code’s application to energy 

fluctuations in a plasma.  Chapter VII suggests the future possibilities of this 

code and others like it.  Appendix A describes ideas, and their consequences, 

that were developed in the course of the research that led to the solution 

presented here.  Appendix B and C provide key portions of the source code of 

the quantum PIC code, the code used to visualize the results, and other related 

code.  

D. Conventions

The convention used in this presentation uses the Dirac bra-ket notation 

9



( ) to represent wavefunctions.  The position operator ˆ x  has an associated 

complete position basis set x{ } , and its dual is the momentum operator ˆ p  

with its complete momentum basis set p{ } .  These spaces are related through 

the Fourier transform kernel, x p =
1

h
exp(

2πixp

h
) , where h  is Planck’s 

constant.  The time-dependent Schrödinger equation is 
  
ˆ H = ih

∂
∂t

, where 

ˆ H  is the Hamiltonian operator and   h ≡ h 2π .  This convention is best expressed 

in a reference by Townsend. 54  
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II. Theory 

A. The Approach

Our approach to evolving a set of quantum-mechanical wavefunctions is 

the following: Each wavefunction can be evolved using a large number of 

arbitrary paths.  Because of the nature of the contributions of these paths, the 

total contribution can be simplified to just those from the classical paths.  These 

contributions form the wavefunction at the new time step.  Duplicating this 

procedure for all wavefunctions updates the entire system to the new time step, 

allowing the process to repeat.  

We begin with the paths used for Feynman path integrals. 8  More 

commonly used in quantum field theory, these paths begin at an initial position 

in the wavefunction at the earlier time step, weave their way through space, 

and end at a final position in the wavefunction at the later time step.  The 
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contribution of this path is the product of the wavefunction evaluated at the 

beginning of the path and a complex number whose phase is proportional to 

the action, the integral of the Lagrangian, along that path.  These contributions 

are summed to form the new wavefunction.

The technique used to simplify the contributions to the classical paths is 

called a “semiclassical approximation”.  Although not exactly identical, it has 

much in common with WKB techniques and stationary-phase methods.  It 

involves summing the contributions from paths with the same initial and final 

positions.  The result is that the paths in the vicinity of the path whose action is 

an extremum provide the most significant contributions.  The property of these 

paths to focus on is their phase.  The phase difference between paths changes as 

a function of their variation off the extremum path.  In part because Planck’s 

constant is so small, it tends to be the case that this phase difference increases 

quickly with variation.  This property is essential to this approximation.  Its key 

is in showing that this rapid variation in phase causes their contributions to 

cancel each other.  This cancellation dominates over all other effects.  The special 

path with the extremum action, also found using the Lagrangian-based calculus 

of variations of classical mechanics, is called the classical path.  

In the following sections, we will show derivations of the semiclassical 

methods, from their start in basic quantum mechanics to the complete 

contributions of the classical paths given by the semiclassical approximation.  
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We show these derivations because of two problems found in the course of this 

work: 1. Such calculations could not be found together in detail in any other 

source. 2. Previous results (such as the Van Vleck-Gutzwiller-Maslov 19 

propagator) were found to be inappropriate to this application.  To overcome 

these difficulties, the author reconstructed the semiclassical derivations from 

basic quantum theory and customized them for this dissertation’s application, 

resulting in a new technique not found in previous literature.  In the context of 

quantum field theory, virtual particles are said to follow the paths forming a 

Feynman path integral.  Likewise, we coin the term “virtual classical particles”, 

which trace the classical paths in this discussion.  

B. Feynman Path Integrals

The theoretical basis for the quantum-mechanical methods used here is 

the Feynman path integral.  We begin with a result of the time-dependent 

Schrödinger equation, which will allow us to derive a precise Feynman path 

integral more quickly.  Consider the time evolution of one wavefunction, , 

over an interval from t  to t + ∆t , 

  
(t + ∆t) = exp(−

i ˆ H ∆t

h
) (t) (1)

where   h  is Planck’s constant divided by 2π, and ˆ H  is the complete Hamiltonian,
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ˆ H =
ˆ p l

2

2ml
∑ + Vl( ˆ x l)

l
∑ (2)

where Vl  is the effective potential encountered by particle l .  Define 

f ≡ ( t +∆ t)  and 0 ≡ ( t) .  We then divide this time interval into N 

intervals, each spaced by ∂ti :  

  

f = exp(−
i ˆ H ∂tN

h
)exp( −

i ˆ H ∂tN −1

h
)Lexp(−

i ˆ H ∂ti +1

h
)exp( −

i ˆ H ∂ti

h
)L

Lexp(−
i ˆ H ∂t2

h
)exp(−

i ˆ H ∂t1

h
) 0

(3)

such that

∂t i
i =1

N

∑ = ∆t  and ∂ti > 0 , ∀i . (4)

Next, insert 1 = dxi xi x i∫ , for 0 ≤ i ≤ N , in between the exponentials:

  

f = dx j
j = 0

N

∏∫ xN xN exp(−
i ˆ H ∂tN

h
) xN −1 xN−1 exp(−

i ˆ H ∂tN −1

h
) xN −2 L

L x i exp(−
i ˆ H ∂t i

h
) x i−1 L x1 exp(−

i ˆ H ∂t1

h
) x0 x0 0

(5)

This is an N+1-dimensional integral.  

Consider the ith term, for 1 ≤ i ≤ N , of the above product.  Insert 
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1 = dpi pi pi∫ :

  
xi exp(−

i ˆ H ∂ti

h
) xi −1 = dpi∫ xi exp(−

i ˆ H ∂ti

h
) pi pi xi −1 (6)

We assume ∂ti  is small, substitute the Hamiltonian, and multiply through:  

  
xi exp(−

i ˆ H ∂ti

h
) pi ≈ x i (1−

i ˆ H ∂ti

h
) pi = xi pi −

i∂ti

h
( x i

ˆ p 2

2m
pi + x i V ( ˆ x ) pi )

(7)

where the particle indices of the operators are assumed.  Hitting the kinetic 

energy term on the momentum ket and the potential term on the position bra 

and factoring yields:

  

xi exp(− i ˆ H ∂ti

h
) pi ≈ x i pi 1− i∂t i

h
pi

2

2m
+ V(xi )

 

 
  

 

 
  

 

 
  

 

 
  

≈ x i pi exp −
i∂ti

h
pi

2

2m
+ V(x i)

 

 
  

 

 
  

 

 
  

 

 
  

(8)

Combining (8) with 
  
x p =

1

h
exp(

ixp

h
) , the integrand of (6) becomes  

  
xi pi exp −

i∂t i

h
ˆ p i

2

2m
+V (xi)

 

 
  

 

 
  

 

 
  

 

 
  pi x i −1 =

1

h
exp

ipi(xi − xi −1)

h
−

i∂ti

h
pi

2

2m
+ V(xi )

 

 
  

 

 
  

 

 
  

 

 
  

(9)

We define ˙ x i ≡
xi − xi −1

∂ti

, substitute, and factor:
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1

h
exp

i∂ti pi
˙ x i

h
−

i∂ti

h
pi

2

2m
+ V(x i)

 

 
  

 

 
  

 

 
  

 

 
  =

1

h
exp −

i∂ti

h
pi

2

2m
− pi

˙ x i + V (x i)
 

 
  

 

 
  

 

 
  

 

 
  (10)

Completing the square and factoring gives

  

xi exp(− i ˆ H ∂ti

h
) xi −1 = dpi∫

1
h

exp − i∂t i

h
( pi − m ˙ x i)

2

2m
− m ˙ x i

2

2
+ V(xi )

 

 
  

 

 
  

 

 
  

 

 
  

=
1

h
exp

i∂t i

h
m ˙ x i

2

2
− V(x i)

 

 
  

 

 
  

 

 
  

 

 
  dpi∫ exp −

i∂ti

h
( pi − m ˙ x i )

2

2m

 

 
  

 

 
  

(11)

The integral is a Gaussian integral with a complex exponential, which is solvable 

using a convergence factor.  Also, if we define L(xi , ˙ x i ) ≡
m ˙ x i

2

2
− V(x i) , then 

  
xi exp(−

i ˆ H ∂ti

h
) xi −1 =

1

h
exp

iL(x i , ˙ x i)∂t i

h
 
 
 

 
 
 

2πimh
∂ti

= exp
iL(xi , ˙ x i )∂ti

h
 
 
 

 
 
 

im

h∂ti

(12)

Note that we recognize L(xi , ˙ x i )  as the Lagrangian.  Inserting this expression 

into (5) yields 

  

f = dx j
j = 0

N

∏∫ xN

im

h∂t

 
  

 
  

N 2

exp
i

h
L(xi , ˙ x i )∂ti

i =1

N

∑
 

 
  

 

 
  x0 0 , (13)

which is the path integral from 0  to f  using discrete time steps.  In some 

notations 9, a D is used for the product of differentials.  (13) is called a Feynman 

16



path integral.  (The above derivation is largely similar to one in Chapter 8 of 

Townsend. 54)  

Note that the sum inside the exponential is a time integral of the 

Lagrangian on a path described by xi{ }  (which uniquely determine ˙ x i{ } ).  This 

sum is the action S  along this path:  

S ≡ L(xi , ˙ x i )∂ti
i=1

N

∑ (14)

These paths are diagrammatically shown in Figure 1.  

∆t

x0
x

∂ti

xN

xi

t

(t)

(t + ∆t)

Figure 1. An arbitrary path from x0  to xN .  Paths like this one link contributions 

from (t)  to (t + ∆t)  with a phase difference determined by the action on 

this path.  
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Note that, at this point, other than the modest requirements used so far, the 

paths are arbitrary and unrestricted.  The particles that follow these paths are 

called virtual particles.  

C. The Semiclassical Approximation

We now consider variations ∂x i{ }  from a special path we label xcli{ } , 

where 1 ≤ i < N .  Further definition on the properties of xcli{ }  will be made 

shortly.  We set xi = xcli +∂xi  with xcli  being independent of xi , for 1 ≤ i < N .  

From this point forward, let us set ∂ti =∂ t = ∆t N .  We may apply this 

substitution to the path integral in (13), but, for the moment, let us focus on the 

action.  

S =
m(xcli − xcli −1 +∂x i −∂x i −1 )2

2∂t2
− V(xcl i

+∂x i)
 

 
  

 

 
  

i = 2

N

∑ ∂t

+
m(xcl1

− x0 +∂x1 )2

2∂t2
− V(xcl1

+ ∂x1 )
 

 
  

 

 
  ∂t

(15)

We assume ∂x i{ }  are small and use a Taylor’s series expansion of V to organize 

S in powers of ∂x i .  
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S =∂ t

m(xcl i
− xcl i −1

)2

2∂t2
− V(xcl i

)

+
m(xcl i

− xcl i −1
)(∂x i − ∂x i −1)

∂t2
−

∂V

∂x xcli

∂xi

+ m(∂xi −∂xi −1)
2

2∂t 2
− ∂2V

∂x 2
x cli

∂x i
2

2

−
∂ 3V

∂x3

xcl i

∂xi
3

3!
+ L

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

i = 2

N

∑ + ∂t

m(xcl1
− x0 )2

2∂t2
− V(xcl1

)

+
m(xcl1

− x0 )∂x1

∂t 2
− ∂V

∂x x cl1

∂x1

+ m∂x1
2

2∂t2
− ∂ 2V

∂x2
xcl1

∂x1
2

2

−
∂3V

∂x3

xcl1

∂x1
3

3!
+ L

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

(16)

Note that the kinetic energy component only contributes to the lowest three 

orders.  

Let us consider with the terms that are first order in ∂x i .  We now finish 

the definition of xcli{ } : we define that these values are such that the first order 

terms in this sum are zero.  Since the ∂x i  are independent of each other, their 

coefficients must each be zero for this condition to be true.  Collecting terms in 

∂x i , for 1 < i < N , implies that, 

−
m(xcl i+1

− xcl i
)

∂t2 +
m(xcl i

− xcli −1
)

∂t 2 −
∂V

∂x x cli

= 0 (17)

Arranging the terms into a more familiar form, we have 

−
∂V

∂x xcl i

= m

(xcli +1 − xcli )

∂t
−

(xcli − xcli −1)

∂t
∂t

, (18)

and we recognize that this is the time-centered discrete form of F = ma .  Also 
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note that the time-discrete velocity expressions are time-centered at half steps 

relative to the time centering of the position variables.  This is consistent with 

the leap-frog method used to numerically trace classical paths.  Hence, we 

recognize that the path described by xcli{ }  is a classical path, justifying its label, 

cl .  Also, it becomes reasonable to name the particles that follow these paths 

virtual classical particles.  

Figure 2 depicts a classical path accompanied by its associated variations.  

∆t

x0
x

∂t

xc lNt

(t)

(t + ∆t)

Figure 2. A classical path is shown, accompanied by variations on that path.  The 

virtual classical particles link the quantum wavefunctions.  

It is the contributions of a multitude of these classical paths, at a variety 
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of positions and momenta, that construct the final wavefunction from the initial 

wavefunction.  Also, we make the following distinction: We name ∂t  the 

classical time step because it is the time that separates steps of the classical path, 

but ∆t  is the quantum time step because it is the interval between evaluations of 

quantum wavefunctions.  

D. Initial Position and Final Momentum

We need to consider how to connect the ends of these classical paths to 

the initial and final wavefunctions.  Using the criterion for the term first order in 

∂x1 , we have an initial constraint:

−
∂V

∂x xcl 1

= m

(xcl 2 − xcl1 )

∂t
−

(xcl1 − x0 )

∂t
∂t

(19)

This links the classical path to the integral over x0 .  

Now we consider the final constraint.  Let us insert 1 = dpf p f p f∫  

before the xN  in (13), resulting in:

  

f = dp f dx j
j=1

N

∏∫ p f

im

h∂t

 
  

 
  

N 2 1

h
exp(−

ixN p f

h
)exp

i

h
S

 
  

 
  x0 0 (20)

Performing the above substitution and requiring that the coefficient of the ∂xN  
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be zero implies the following constraint:

−
p f

∂t
+

m(xcl N
− xcl N −1

)

∂t2 −
∂V

∂x x cl N

= 0 (21)

Rearranging gives 

−
∂V

∂x xcl N

=
p f −

m(xc lN − xclN −1)

∂t
∂t

(22)

(18) gives N-2 constraints on xcli{ } , and (19) and (22) provide the (N-1)th and 

Nth constraint, allowing xcli{ }  to be uniquely identified by x0  and p f .  

Rewriting f : 

  

f = dp f∫ dx0∫ p f

1

h
exp(−

ixclN p f

h
)exp

i

h
Scl

 
  

 
  A x0 0 (23)

where 

Scl ≡ ∂t
m(xcl i

− xcli −1
)2

2∂t 2 − V(xcli )
 

 
  

 

 
  

i =1

N

∑ , (24)

(using xcl 0 ≡ x0 ) the zeroth order terms of the action, 

  

A = d(∂xi )
i =1

N

∏∫ im

h∂t

 
  

 
  

N 2

exp
i

h
S2

 
  

 
  , (25)

a N-dimensional integral, and 
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S2 =∂ t

m(∂x i − ∂x i −1)
2

2∂t2
− ∂ 2V

∂x2
x cli

∂xi
2

2

−
∂3V

∂x3

xcli

∂xi
3

3!
+ L

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

i = 2

N

∑ +∂ t

m∂x1
2

2∂t 2
− ∂ 2V

∂x2
x cl1

∂x1
2

2

−
∂3V

∂x3

x cl1

∂x1
3

3!
+ L

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

, (26)

the second order terms and higher of the action.  A substitution, p f = pclf ( p0 )  

(using p0 ≡ m
x

cl1
− x0

∂t
), can be used to identify these paths using initial 

conditions only.  

E. The Matrix

(This section largely follows Chapter 14 of the Schulman reference 17 , 

with significant points of customization.)  Consider S2 .  Let us assume that the 

terms higher than second order in ∂x i  are neglectable.  This allows us to write 

S2  in the following form:

S2 =
m

2∂t
jM j

i
i , (27)

using the Einstein summation convention, where   ≡ ∂x1,∂x2,L,∂xN( )T
, M  is a 

tridiagonal N × N  matrix, 

23



  

M = u − w =

2 −1 0 L L 0

−1 2 −1 M
0 −1 2 O M
M O O O 0

M O 2 −1

0 L L 0 −1 1

 

 

 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
  

−

w1 0 L 0

0 w2 M
M O 0

0 L 0 wN

 

 

 
 
 
 
 

 

 

 
 
 
 
 

, (28)

 and 

wi ≡
∂t2

2m

∂2V

∂x2

x cli

.  (29)

For any matrix M , there exists a unitary transformation U  so that 

M' = UMU −1  is diagonal.  The basis set of M' maps to the eigenvectors of M .  In 

the new basis set,   ' = U = ∂x'1 ,∂x' 2 ,L,∂x' N( )  and M'  is diagonal:

  

M' =

m1 0 L 0

0 m2 M
M O 0

0 L 0 mN

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(30)

where mi  are the eigenvalues of M  (and M' ).  Therefore S2  may be rewritten 

as:

S2 =
m

2∂t
' j M' j

i ' i =
m

2∂t
∂x' i

2 mi
i=1

N

∑ (31)

This makes A  separable:
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A = d(∂x' j )
j =1

N

∏∫ im
h∂t

 
  

 
  

N 2

exp
i
h

m
2∂t

∂x' i
2 mi

i=1

N

∑
 

 
  

 

 
  

=
im

h∂t

 
  

 
  

N 2

d(∂x' i )∫ exp
im

2h∂t
mi∂x' i

2
 
  

 
  

i =1

N

∏

(32)

The integrals are Gaussian, so A  simplifies:

  

A =
im

h∂t

 
  

 
  

N 2 2πh∂t

im ⋅ mii=1

N

∏ =
im

h∂t

 
  

 
  

N 2 h∂t

im

 
 
 

 
 
 

N 2
1

mi
i =1

N

∏
=

1

det(M' )
(33)

because the determinant of a diagonal matrix is the product of its elements.  But 

since det(M') = det(UMU−1 ) = det(U )det(M)det(U−1 ) = det(M) , 

A =
1

det(M)
(34)

(There are issues concerning when this determinant goes to zero, but that will 

be addressed in the next section.)  

Then f  becomes: 

  

f = dp f∫ dx0∫ p f

1

hdet(M)
exp(−

ixclN p f

h
)exp

i

h
Scl

 
  

 
  x0 0 (35)

a two-dimensional integral, with M  defined above.  
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F. The Determinant

(At this point, this discussion substantially diverges from Schulman’s 17 

and, to the author’s knowledge, is not expressed elsewhere.)  Let us take a 

closer look at evaluating the determinant of the above matrix.  At first glance, it 

appears calculating this determinant may be necessary to allocate at least O(N) 

storage, but an alternative approach was developed to reduce the storage to 

O(1).  This approach was developed to find a convenient form to calculate it 

numerically, but it also shows the likelihood of it causing the determinant to 

become singular, which is the results from the “conjugate points” and 

“caustics” studied at length in other references 10,13,17-19,51.  

Let us consider the determinant of an i × i  upper-left minor of M  and call 

it di .  For 2 < i < N , 

  

di =

2 − w1 −1 0 L L 0

−1 2 − w2 −1 M
0 −1 2 − w3 O M
M O O O 0

M O 2 − wi −1 −1

0 L L 0 −1 2 − wi

(36)

Evaluating this determinant by minors gives:
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di = (2 − wi)

2 − w1 −1 0 L 0

−1 2 − w2 O M
0 O O O 0

M O 2 − wi− 2 −1

0 L 0 −1 2 − wi−1

− (−1)

2 − w1 −1 0 L 0

−1 2 − w2 O M
0 O O O 0

M O 2 − wi −2 0

0 L 0 0 −1

(37)

But we may recognize that the first determinant is di −1  and the second becomes 

(−1)di − 2 .  

Therefore, 

di = (2 − wi)di −1 − di− 2 (38)

There are a few special cases: For dN , d1 , and d2 :

dN = (1− wi )dN −1 − dN − 2 (39)

d1 = (2 − w1) (40)

d2 = (2 − w2 )d1 −1 (41)

Or (38) may be used to calculate d2  and d1  if we define 

d0 ≡ 1 (42)

and 

d−1 ≡ 0 (43)

The above expressions provide a complete description, in the form of an 

iterative method, for evaluating the determinant of M  .  Algorithmically, this 
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evaluation can be performed alongside the evaluation of the classical path using 

(18) with a minimum of storage space, because wi  is only a function of xcli .  

Rearranging (38) gives 

(di − 2di −1 + di −2 ) + widi −1 = 0 (44)

We recognize that this is a time-discrete leapfrog-method form of the following 

ordinary differential equation:

dy(t)

dt
+ w(t)y(t) = 0 , (45)

which is the simple harmonic oscillator equation with a time-dependent 

frequency term, where y(t) = dt  and w(t) = wt +1 =
∂t2

2m

∂ 2V

∂x2

x clt+1

.  Interpreting (40) 

and (41) in this context implies the following initial conditions on y :

y(0) ≡1 (46)

˙ y (0) ≡1 − w1 (47)

The determinant is given by y(N) − y(N −1) .  

Let us investigate the likelihood of dN  becoming zero.  For the sake of 

argument, let us make w  constant.  If w = 0 , then y  begins at 1 and increases 

linearly without bound, resulting in a determinant of 1.  If w < 0 , which 

corresponds to a defocusing V , then y  will increase without bound 

exponentially, resulting in a determinant greater than 1.  

However, if w > 0 , corresponding to a V  that focuses, then y  will behave 

28



as a sine wave with a period of:

T =
2π

w
(48)

Because the initial conditions are non-zero with a positive slope and w  is 

typically less than 1, ˙ y  will not become zero within one eighth-period.  

Therefore, if we wish to be sure of never encountering a path whose 

determinant becomes zero, then 

N <
π

4 w
=

π
4∂t

2m
∂2V

∂x2 , (49)

but ∂t  is dependent on N , so the requirement becomes 

∆t <
π
4

2m
∂2V

∂x2 (50)

Here we have a recommended upper bound on ∆t , the time between quantum 

wavefunction evaluations, depending on the physics of the system.  This is a 

worst case scenario, when V  has a period of sustained focusing (e.g., in the 

simple harmonic oscillator).  To the author’s knowledge, this prediction (50) is 

not made and utilized elsewhere.  

For typical physical parameters, however, other issues, such as changes 

in the effective V  due to the movement of other particles, will require a ∆t  

significantly smaller than required by (50).  In practice, the period is long 

enough (or 
∂ 2V

∂x2  is small enough) so that dN , at worst, remains within 1% of 1.  
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G. Summary

We now have a method to time-evolve quantum wavefunctions using 

classical calculations designed for computation.  Here we gather the equations 

in preparation for implementation.  We calculate the following double integral:

  

(t + ∆t) = dp0∫ dx0∫ pclf

∂pcl f

∂p0

 

 
  

 

 
  

1

hdet(M)
exp(−

ixcl N
pcl f

h
)exp

i

h
Scl

 
  

 
  x0 (t)

(51)

A large number of classical paths, each uniquely identified by the dummy 

variables x0  and p0 ≡ m
x

cl1
− x0

∂t
 are traced using: 

−
∂V

∂x xcl i

= m

(xcli +1 − xcli )

∂t
−

(xcli − xcli −1)

∂t
∂t

(18)

over N = ∆t ∂t  time steps (using xcl 0 ≡ x0 ).  The action along each path, Scl , is 

given by:

 Scl ≡ ∂t
m(xcl i

− xcli −1
)2

2∂t 2 − V(xcli )
 

 
  

 

 
  

i =1

N

∑ (24)

Simultaneous with the evaluation of each classical path, det(M)  is calculated 

using an iterative method:

di = (2 − wi)di −1 − di− 2 , (38)
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for 1 ≤ i < N , using initial conditions 

d0 ≡ 1  and d−1 ≡ 0 (42) & (43)

where 

 wi ≡
∂t2

2m

∂2V

∂x2

x cli

(29)

The determinant itself is 

det(M) = (1− wN )dN −1 − dN − 2 (52)

Finally, the final classical momentum, pclf , is given by: 

−
∂V

∂x xcl N

=
pclf −

m(xclN − xc lN−1 )

∂t
∂t

(53)

This completes the time evolution of .  
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III. Implementation 

A. The Numbers

We now need to focus on implementing the methods described in the 

last chapter to a numerical technique appropriate for current computer 

hardware.  This chapter defines and details the organization of these 

semiclassical calculations to evolve quantum wavefunctions.  The following 

presentation introduces methods and results that are new and have not been 

located in any previous literature.  

The total wavefunction is assumed to be separable into wavefunctions 

for each particle.  

Ψ = l
l

∏ (54)

We represent each wavefunction on a set of grid points in space, thus 

discretizing the wavefunctions.  Each l(x) ≡ x l  is a complex number.  All 
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wavefunctions are begun with a complete description of their initial state at 

t = 0 .  At any time t , the information contained in all the l(x) ‘s alone is used to 

update the wavefunctions to the next ∆t .  

(51) contains a prescription for the organizing the classical paths.  The 

obvious solution is to approximate the integral over x0  with a sum, and assign 

values of x0  to the grid points used to represent l(x) .  However, what is 

missing is how to link these paths to the grid point representation of the final 

wavefunction.  Clearly defining this link is very important for the correct 

evolution of these discretized wavefunctions.  We show this link by hitting a 

x f  bra on both sides of the equation.  (51) becomes 

  

x f (t + ∆t) = exp(
ix f pcl f

h
)exp( −

ixcl N
pcl f

h
)
exp iScl h( )
h det(M)

x0 ( t) ∆x∆p

x0

∑
p0

∑ (55)

(We assume the majority of the effects on this value will be due to phase 

variations between classical paths, expressed in Scl , therefore we assume 

∂pcl f

∂p0

 

 
  

 

 
   varies negligibly from 1.)  Each l(x f ,t + ∆t)  acquires the value of a 

double sum.  Note that the classical paths can weave, and end, in between grid 

points and at the same time (55) provides a means to link the initial and final 

wavefunctions on the same set of grid points.  This feature is not provided in 

other theoretical studies of the semiclassical method.  
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One other issue to examine is the range of momenta.  The paths of the 

original path integral essentially explore all of phase space.  The conversion to 

classical paths allows us to “strategically poll” phase space, but the sampling 

needs to be just as thorough.  We have established that x0  will range over all 

grid points, which is the entire space of the calculation, so it seems reasonable to 

say that p0  will range over all momenta of the calculation.  What is the range of 

possible momenta of this calculation?  The Nyquist theorem states that a 

maximum frequency can be represented on a series of grid points in time.  This 

theorem has a simple extension to the greatest momenta that can be 

represented using grid points in space.  

pmax = h 2∆x (56)

where ∆x  is the grid spacing and h  is Planck’s constant.  Since the 

representation is complex, negative momenta are allowed, so the range of p0  is  

− pmax < p0 < pmax .  The resolution of the momentum representation of the 

wavefunction, l( p) , is the same as that of the position representation.  Since 

we justified the spatial resolution using l(x) , it seems reasonable that the 

resolution of the p0  distribution should be at least that of l( p) .  Although this 

is not a formal argument, the success of this momentum distribution has been 

seen empirically.  

The general prescription for time evolving the wavefunction is as 

follows, guided by (55) from right to left.  
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Particle Preparation - Begin with a large array of virtual classical particles.  

Each starts from a grid point, x0 , of l(x,t) , and particles that start from 

the same grid have a range of initial momenta, p0 < pmax .  With each 

virtual classical particle, remember the value of the initial wavefunction 

at the particle’s start, l(x0,t) .  

Particle Pushing - Trace the classical path of each particle using (18), but 

accumulate its action using (24), and determinant values using (38).  

Particle Depositing/Wavefunction Reconstruction - For each virtual 

classical particle, at the end of its path, calculate the product of the initial 

wavefunction, square root of the determinant, and complex exponentials 

based on the information contained in l(x0,t) , Scl , xc lN , pclf , and det(M)  

(using (52)).  Then x f  ranges over all the grid points in l(x,t +∆ t) .  The 

complex number resulting from the classical path is then multiplied by 

the leftmost complex exponential in (55) and this product is accumulated 

into l(x f ,t + ∆t) .  Completing this task for all x f  finishes the deposit of 

that virtual classical particle into the final wavefunction.  Completing this 

task for all such particles reconstructs the entire final wavefunction.  

The above procedure assumes that the effective potential on each l  have been 

established prior to the particle pushing.  The details of that calculation depend 
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on the selected physics of the problem, such as interactions between quantum 

particles.  

There are a few points to note: 

• Once all l(x,t +∆ t)  are complete, the procedure may start anew to 

calculate l(x,t + 2∆t) , and so on.  

• The amount of data retained between quantum time steps are no more 

than that of the l(x) .  

• Once l(x,t)  (and the effective potential) at a particular time t  is 

established, the calculations preparing, pushing, and depositing the 

virtual classical particles can be performed in any order.  This 

observation encourages us to use a style of implementation suitable for 

computers with multiple processors.  

B. The Plasma PIC Code

Particle-in-Cell (PIC) implementations have been used with great success 

in modeling plasmas.  Such an implementation assumes a particle-based model 

of a plasma.  In contrast to a fluid-based model, which calculates the result of a 

finite-difference form of differential equations that assume the plasma behaves 

as a continuum, the particle model calculates the motions of a multitude of 
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individual particles.  These particles, possessing mass and charge, follow 

motions due to their mutual electromagnetic fields in a way consistent with 

classical mechanics (i.e., the extremum of the action, consequently F = ma ).  The 

simulations successfully show plasma dynamics using only this “first-principles” 

approach.  

The Plasma Physics Group at UCLA has developed efficient and effective 

methods for using parallel computers to carry out PIC simulations.  Their 

codes, achieving ≈90% parallelism and ≈40% of estimated peak speed, have 

handled over 2 x 108 particles on 32 x 106 grid points in three-dimensions. 27-33  

The methods are robust and portable 34,35 and have run successfully on a wide 

range of parallel computers (e.g., Cray-90’s, T3Ds, T3Es, and IBM SP2s).  

What is interesting to note is that much of the success of the plasma PIC 

code is possible because of how well it manages the simulation of and 

interactions between a very large collection of particles obeying classical 

behavior.  Knowing the demonstrated success of such techniques in modeling 

plasmas, J. M. Dawson conceived of the idea to apply the same techniques to 

managing the classical paths expressed in the semiclassical methods derived for 

quantum mechanics.  A plasma PIC code was converted to a quantum PIC 

code, but, because of the importance of the structure of the plasma PIC code to 

a quantum simulation of this type, we describe the plasma PIC code here.  In 

this particular case, the code assumes that the interactions are electrostatic.  
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The particles in the plasma simulation are distributed in a region of 

space.  Each particle is defined to have a position and velocity in this space.  

Also, to facilitate the interaction calculations, a regular set of grid points are 

defined in this space.   The particles usually significantly outnumber the grid 

points, and may reside anywhere in between the grids.  The particles, residing 

in a space of grid-points, is depicted in Figure 3.  

x

Figure 3.  Particles in space overlaid with a grid in one dimension.  

Figure 4 shows a simplified flow chart for the plasma PIC code.
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Figure 4. Simplified flow chart for the plasma PIC code.

The code has three major steps: 

Charge Deposit - Given the positions and charges of the particles, the 

charge deposit routine accumulates the charge contributions due to each 

particle onto a the grid defined by the grid points.  Often, the particles 

are considered to have a width comparable to the grid spacing, so their 

charge contributes to more than one grid point.  A number of charge 

sharing techniques are also used.  This routine generates a charge 

density on a grid throughout space.  

Field Solve - Then, the electrostatic field and electrostatic potential are 

calculated given the charge density from the depositor.  It generates this 

information by performing a Fast Fourier Transform (FFT) of the charge 
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density, then multiplying this density in Fourier space by a kernel 

corresponding to the Poisson equation, finally using an inverse FFT to 

generate the electrostatic field and potential.  The speed of this method 

of solving for fields largely motivates the use of grid points.  

Particle Push - Here, the velocities and positions of the particles are 

updated using the electrostatic field.  The field at a particle’s position is 

interpolated from the electric field at neighboring grid points.  Often the 

leap-frog method is used here for its balance of stability, speed, and 

accuracy.  The routine calculates one leap-frog iteration per particle.  The 

bulk of the CPU time is spent here, due to the sheer number of particles.  

Once the particle push is finished, the particles have new positions, which are 

used in the charge deposit to repeat the process.  

Described so far is how the plasma code as a whole works, but it 

becomes important how to implement this computation on parallel computers.  

The key is how to organize the work distributed between processors.  Here we 

use a parallel implementation of a technique originally named General 

Concurrent Particle-in-Cell. 55   Today it is commonly referred to as Particle-In-

Cell (PIC), and we use a version of it for parallel computers called Parallel PIC.  

On a parallel system containing N processors, the space is divided into N 

regions called cells.  Each processor is responsible for the physics inside its cell.  

This means that every step in the plasma code must be partitioned in this way.  
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A portion of particles is in each cell, hence the name of the approach.  The 

particles, partitioned by cells, is depicted in Figure 5.  

x

Cell

Figure 5.  Particles in space partitioned into four cells.  

Each processor is responsible for the particles and grid points assigned to 

it, and communicates with the other processors only when necessary.  For 

example, the charge depositor is easy to organize, since each processor is 

depositing particle charge only on to its own grids.  Only at the end of this step 

do the processors need to stitch together the charge densities at the edges of 

their cells.  

The field solver is more complicated, as it needs to accomplish FFTs on a 

grid distributed across multiple processors.  In one-dimension, this problem is 

handled using a custom version 56  of the FFT algorithm designed for this 

purpose.  

Once the electrostatic field information is properly distributed between 

processors, the particle pusher on each processor updates the particle positions 
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and velocities as in the nonparallel case, but some of the particles may move 

out of their original cell.  A particle manager must then determine which 

particles have left its original cell and which processor they should subsequently 

reside in.  It then forwards each particle to the processor corresponding to the 

cell it just entered.  

C. The Quantum PIC Code

We now describe a prescription to create the quantum PIC code from 

the plasma PIC code.  The quantum PIC code has significant organizational 

differences from its plasma counterpart.  Rather than the classical particles 

containing the primary description of the simulation from time step to time 

step, it is the quantum wavefunctions, l(x,t) , that contain the most important 

information.  We borrow the grid-point formalism used for the field solve and 

apply it to the definition of the spatial discretization of the quantum 

wavefunctions.  Therefore, in the code, l(x,t)  is represented using a complex 

array identical in dimension to the array used for the electric potential.  

Before the main time step loop begins, we initialize the code by 

allocating all needed arrays and loading the wavefunction arrays with the 

desired initial conditions.  The initial conditions are a simple matter of 

calculating or loading the desired wavefunctions.  For example, Listing 1 shows 
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a loop over partition k of wavefunction l that loads each wavefunction in the 

array wfcn with Gaussian wavefunctions of standard deviation 4 centered at 

positions given by real array initialPosition with average momenta given 

by real array initialMomentum.  

      do k=1,nblok
        joff = noff(k) - 2
        do l=1,nspecies
          pkx = twopi*initialMomentum(l) 
          do j=1,nxpmx 
             wfcn(j,l,k) = exp(-0.25/(4**2)*(j + joff - &
     & initialPosition(l))**2) * &
     & cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
          enddo
        enddo
      enddo

Listing 1: A Fortran code example loading the wavefunctions with 
Gaussians. 

where noff(k) contains the coordinate of the first grid point of cell k, twopi is 

2π,  nspecies is the number of quantum wavefunctions, and nxpmx is the 

number of grid points per cell.  The structure of the nested loops is consistent 

with the partitioning method expressed in a work by Decyk. 34  

We show a simplified flow chart for the quantum PIC code in Figure 6 

and subsequently describe each major section of the code.
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Figure 6. Simplified flow chart for the quantum PIC code

• Charge Deposit

We begin with the charge deposit.  The plasma code’s original depositor 

is inappropriate here, but the replacement is much simpler.  The charge that 

quantum particle l  encounters is computed by:

l (x) = ql' | l' (x) |2

l'≠ l
∑ (57)

where ql  is the charge for particle l  (e.g., for electrons, ql = −e ).  This particle 

sees the total charge density minus the charge due to itself, which prevents self-

interaction.  Since  at a grid point contributes to charge at the same grid point, 
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this step is very easy to implement and poses no problems for parallelism.  A 

code example is in Listing 2.  

      do k = 1, nblok
        do j = 1, nxpmx
          do l=1,nspecies
! initialize charge density to zero
            q(j,l,k) = 0.0
          enddo
        enddo
      enddo
! deposit charge   using qme |wfcn|^2 leaving out self-
interaction
      do 1190 k = 1, nblok
! only where we need to
      do 1180 j = 1, nxp(k)
      do l=1,nspecies
      qiw = qme*(real(wfcn(j+1,l,k))**2 + 
aimag(wfcn(j+1,l,k))**2)
        do lt=1,nspecies
          if (l.ne.lt) then
            q(j+1,lt,k) = q(j+1,lt,k) + qiw
          end if
        enddo
      enddo
 1180 continue
 1190 continue

Listing 2. Charge depositor for wavefunctions. 

q is the charge density array, partitioned across processors, to be used in the 

field solve.  

• Field Solve

Next, we use the same field solve routines, unchanged from the plasma 

PIC code, to provide the electric field and the electric potential.  We will need 

the field for the classical path calculation and the potential for the classical action 
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calculation.  Note that, for N quantum wavefunctions, N different charge 

densities will be produced, so N field solves are necessary in one quantum time 

step.  A natural solution is to set up a loop over quantum particle inside the 

time-step loop.  

• External Potential

In addition, we have the option of adding an external potential to the 

field and potential arrays.  This feature is useful for textbook examples, such as 

the simple harmonic oscillator.  In one dimension, it is a simple task of 

accumulating the calculated potential into the electric potential array and its 

negative derivative into the electric field array.  This approach allows for time-

dependent external fields as well.  These calculations are local, providing for 

easy parallelization.  

With the wavefunction and field arrays ready, we now proceed to the 

procedures that calculate (55).  To store information about the virtual classical 

particles, we borrow the plasma code’s original particle array and extend it.  

Formerly, each entry of this array had information only about position and 

velocity.  In the quantum PIC code, we must add allocation for the action (1 

real), the determinant (2 reals for di  and di −1 ), and the value of the original 

wavefunction (1 complex).  In the one-dimensional code, this increases the 
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number of real numbers allocated per classical particle from 2 to 7.  

• Particle Preparation

The virtual classical particle array is initialized using a new particle 

preparation routine.  The initial conditions of these virtual classical particles are 

determined by the indices of the double sum expressed in (55).  The particles’ 

initial positions are evenly distributed across all grid points of the wavefunction.  

Particles beginning at the same grid point have a regular distribution of initial 

momenta, bounded by (56).  For all particles: the action attribute of the particle 

is initialized to zero; the determinant information are initialized according to 

d0 ≡ 1 and d−1 ≡ 0 ; (42) & (43)

and the initial wavefunction information is set to the wavefunction evaluated at 

the grid point from which the virtual classical particle begins.  Note that this 

particle initialization uses operations are entirely local (copying wavefunction 

data and other initialization) or are very regular (initial positions and velocities), 

making this routine simple to parallelize.  (This is in contrast to particle 

initialization in the plasma code, which must generate a psuedo-random 

distribution while guaranteeing no correlations of particle data between 

processors.  The typical solution is for all processors to generate identical 

distributions of the entire plasma and disposing the particles outside of their 

assigned cells, providing no parallelism.)  
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• Particle Push

With the virtual classical particles initialized, the code is ready to push 

them through space.  This involves a modified version of the plasma code’s 

particle pusher.  Since the classical path specified by (18) is the same provided 

by the leap-frog method driven by the force described by the electric field 

array, that portion of the routine is unchanged.  The pieces we must add are the 

action accumulation and the determinant evaluation.  The accumulation of the 

action is given by (24), which uses the electric potential array and the velocity, 

time-centered at half steps, given by the leap-frog method.  The evolution of 

the determinant is given by (38).  

Listing 3 gives a code sample that advances the particle position and 

velocity according to the leapfrog method (18) and the classical action (24), 

assuming that ax and px are loaded with the electric field and the potential at 

the particle’s previous position.  

! new velocity
      dx = part(2,j,k) + qtm*ax

! action accumulate
      part(3,j,k) = part(3,j,k) + .5*dt*((dx)**2) - qtm*px
! new velocity 
      part(2,j,k) = dx
! new position
      part(1,j,k) = part(1,j,k) + dx*dt

Listing 3. A code listing for one virtual classical particle push.  

where dt is the classical time step, qtm is the product of the particle’s charge to 
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mass ratio and dt, and part is the particle array.  Then we have the 

determinant calculation in Listing 4.  

! push det's, using (∂t)^2 V'' / m 
! = (dt/vscale)^2 (qtm*(vscale**2)/dt)*pt'' / m 
! = pt''*qtm*dt
      px = pt(nn+1,l,k) + pt(nn-1,l,k) - 2.0*pt(nn,l,k) 
      ax = part(7,j,k)
      part(7,j,k) = part(6,j,k)
      part(6,j,k) = (2.0 - px*qtm*dt) * part(7,j,k) - ax

Listing 4. Determinant evolution code sample. 

where nn is the nearest neighboring grid point to the current position of the 

particle.  (vscale will be defined in a later section.)  px acquires the value of the 

second derivative of the potential, which is used to calculate the latest 

determinant value in part(6,j,k).  Here it is possible to check if the 

determinant is going become singular.  

• Particle Manager

Since the particles, after one push, could venture outside their initial cell, 

the particle manager of the plasma code must be invoked here.  Other than the 

simple change to allow for more data per particle, it is identical to the plasma 

PIC code’s particle manager.  Parallelization issues for both the pusher and the 

manager are identical to that of the plasma code.  

One important conceptual difference we must emphasize here, however, 

is that the particle push/particle manager pair is evaluated many times.  One 
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push corresponds to one classical time step ∂t , which subdivides the quantum 

time step ∆t , as related by (4).  The ratio of the quantum time step to the 

classical time step is how many times the particle push and particle manager 

must be evaluated.  

• Wavefunction Reconstruction

Finally, we focus on the wavefunction reconstruction routine.  This 

routine computes “the deposit of complex charge” due to the virtual classical 

particles, which has a vague analogy to the plasma code’s charge depositor, 

hence an alternative name of “wavefunction depositor”.  This routine is new 

and unique to the quantum PIC code.  

One way of looking at the implementation of this code is by looking at 

(55) the following way: 

  

x f (t + ∆t) = exp(
ix f pcl f

h
) f (x0, p0 )

x0

∑
p0

∑ (58)

where 

  
f (x0 , p0) ≡ exp(−

ixcl N
pcl f

h
)

exp iScl h( )
h det(M)

x0 (t) ∆x∆p (59)

pclf  and f  are computed from the particle data calculated by the particle pusher 

using (24), (52), (53), and (55).  The focus of the problem is on x f .  Instead of 
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summing in the order suggested strictly by (58), where one x f  is considered, 

and all classical particles are summed, instead consider one virtual classical 

particle, and distribute its contributions to the final wavefunction as a function 

of x f .  

Besides computing f  only once per virtual classical particle, this 

approach allows the following scheme for parallelization.  Each processor 

allocates a temporary complex array large enough for a complete description of 

the wavefunction for all cells.  Each processor then accumulates the 

contributions from its assigned virtual classical particles into its array according 

to (58).  These steps so far require no interprocessor communication.  

With the wavefunction buffers complete, these arrays then need to be 

summed between processors.  The temporary array each processor is holding 

is partitioned into sections designated for other processors.  Each processor 

sends to every other processor the data assigned to them, and receives from 

every other processor the data it is supposed to accumulate to form its section 

of the final wavefunction.  After the final sum is finished, the complete final 

wavefunction is formed, correctly partitioned between each processor.  

Calculating N complex exponentials for N grid points according to (58) 

can in general be time-consuming.  However, the current version of the code 

uses a code optimization that completes the same task using only two complex 

exponential calculations instead of N, resulting in an order of magnitude speed-
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up for the overall subroutine.  We know that the values of x f  are regularly 

spaced according to

x f = x f 0 + j∆x (60)

where ∆x  is the grid spacing and j  is a nonnegative integer.  First, compute the 

two complex values

  
y0 ≡ exp(

ix f 0 pcl f

h
) f (x0, p0 ) (61)

  
m ≡ exp(

i∆xpcl f

h
) (62)

which cost two complex exponentials and one complex multiply to produce.  

The contribution to the wavefunction at the lowest value of x f  is simply y0 .  For 

the next value of x f , multiply m  by y0 .  Then for the next, multiply by m  again, 

and so on for all grid points.  

Implementing this technique in code is shown in Listing 5.  

           ctemp = wf * &
     &  cmplx(cos(phase + pdh * ( nnoff + 1 ) ), &
     &        sin(phase + pdh * ( nnoff + 1 ) ) ) 
           cincr = cmplx( cos(pdh), sin(pdh) )

           do jw=1,nxpmx     
         
             wtemp(jw,kw,k) = wtemp(jw,kw,k) + ctemp
             
             ctemp = ctemp * cincr
           end do

Listing 5. Inner loop for rapid calculation of contributions to all grid points.  

pdh is the final momentum divided by   h , nnoff+1 is the position of the the 

52



first grid point in this cell, wf is the value of f (x0 , p0)  given by (59), and wtemp is 

the temporary wavefunction array.  This listing assumes that the simulation is 

organized such that ∆x =1 .  

This procedure completes the contribution due to one virtual classical 

particle, and we repeat the procedure for all particles.  After all the 

contributions are summed, the data in the virtual classical particle array may be 

discarded, and its allocation may be reused.  

• Renormalization and Diagnostics

To preserve the norm of the wavefunction against numerical error, it is a 

good idea to renormalize the wavefunction data at this time, maintaining

l l = 1, for all l (63)

With all wavefunctions updated to the new time step, the wavefunction data for 

this time step can be saved to a file, and a variety of diagnostics can be 

computed.  Parallelization issues involve properly summing values across 

processors since the wavefunction being diagnosed or renormalized is 

distributed.  The entire procedure repeats to continue the evolution of the l .  

D. Boundary Conditions

An important issue in the simulation is how to correctly contain the 
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quantum wavefunctions if they approach the edges of the simulation.  The 

most typical confinement appropriate for quantum mechanics is the infinite 

square well potential, which implies the boundary condition constraint  

l(x) = 0  for x = 0  and x = L (64)

where L  is the size of the box.  

However, to make this constraint consistent with these semiclassical 

methods is an involved question.  How should the wavefunction and the virtual 

classical particles behave to be consistent with this constraint?  A variety of 

possibilities exist.  For the wavefunction, additional guard cells can be added, 

the wavefunction could be extrapolated beyond the boundaries using functions 

that preserved continuity and continuity in the higher-order derivatives of the 

wavefunction, or the wavefunction could be zeroed beyond the boundary.  In 

addition, the particles could be made to reflect (reverse momentum) or not, and 

their phase (due to the action of their paths) may or may not be adjusted upon 

hitting the boundary.  Finally, the boundary itself could be redefined at 

fractions of a grid spacing.  Of course, there are always combinations of the 

above. 

The answer used in the code was found empirically using eigenstates of 

the infinite square well as test cases, to be described in Section D of the 

following chapter.  We allow two guard grid points for each boundary, 

meaning the boundaries are set at grid points at least two grids away from 
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edges of the simulation.  The wavefunction is set to zero at the boundary and 

outside the well.  The virtual classical particles are reflected, their phase receives 

no additional adjustment, but their reflection point is one-half grid beyond the 

wall, diagramed in Figure 7.  

Figure 7. A virtual classical particle reflecting at one-half grid point behind the 

l(x = 0) = 0  boundary of the well.  

The precise theoretical reasons for this phenomena has not yet been 

determined, but the source of empirical support for this conclusion will be 

given in the following chapter.  

Implementing these adjustments is not difficult.  The code to zero the 

wavefunction is a simple matter to insert after the virtual particle deposit is 

finished in the wavefunction reconstruction routine.  The virtual classical 

particle reflection is handled in the particle pusher after the leapfrog method 

step and before the determinant calculation.  The code checks if the new particle 

position is beyond the reflection point.  If it is, it resets the new position within 
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the boundaries and reverses the velocity.  

E. Simulation Parameters

We have emphasized on describing the structure of the code in the 

preceding sections, but, in order to make the code a practical tool, a number of 

parameters must be set.  The choice of parameters reconcile the properties of 

the algorithms with the practical realities of the numerics.  This section is meant 

to describe the reasons for the particular choices made in the code, providing 

guidelines for future adjustments or extrapolations.  

Since this quantum code is derived from a plasma code, it borrows many 

features of the plasma code, sufficiently described in other references.  27-33,57  

The partitioning issues regarding the organization of grid points between 

processors are identical, and the techniques used to create “portable parallel” 

code 34  are carried to any new code unique to the quantum simulation.  This 

prescription allows the code to compile on a variety of parallel computing 

platforms.  It is the recommendation of this author that future users should 

extend this consistency to any new additions to the code.  

Other aspects of the simulation that carry over include the numerical 

values of the parameters involved.  For example, the units of the code are a 

system designed to make the simulation values easier to handle numerically, 
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but based on cgs units.  For example, the mass of the electron me  and the grid 

spacing ∆x  are fixed at 1.  The electron charge e  is a parameter on the order of 

unity, and the time step is a parameter less than one, low enough to prevent 

the classical particles from stepping over too many grid points in one step and 

high enough not to expend excessive amounts of CPU time.  

Extending on this scheme to quantum mechanics, parameters regarding 

Planck’s constant h , the ratio of the quantum time step to the classical time step 

∆t ∂t , and the maximum momentum pmax  must be considered in combination 

with the size of the discretization of the wavefunction.  Given, from the plasma 

code, that ∆x  and m  are 1, (56) implies that h  must be twice the value of vmax , 

the maximum velocity of the virtual classical particles.  

h , represented in the code with planck, must be chosen to be large 

enough for the grid spacing of the wavefunction to provide sufficient resolution 

to represent wavefunctions of interest to us, yet it should not be so large as to 

waste inordinate amounts of CPU time.  64 was found to be a sufficient value 

for planck, although we suspect 32 could function as well.  

planck = 64 implies vmax = 32 , however there is more than one way to 

implement this vmax .  The method chosen here, primarily for diagnostic 

purposes, allows flexibility through a number of adjustable parameters.  In the 

plasma code, vts is interpreted as the thermal velocity of the plasma and is set 

to no higher than 1 so that, in combination with dt, the classical particles do not 
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traverse too many grid points too quickly.  

We wish to preserve this condition and ease debugging; thus, we leave 

the form of the particle pusher code unchanged.  Therefore, the output of the 

particle pusher must be reinterpreted with a rescaling of its units.  A parameter, 

called vscale in the code, was created to describe the ratio of time scales 

outside the particle pusher to the time scale inside.  This allows the velocity 

values seen inside the pusher to actually correspond to considerably higher 

velocities desired outside the routine.  The velocities inside must be multiplied 

by vscale before being used with values in the rest of the code.  Since action is 

also proportional to the inverse of the unit of time, action determined by the 

pusher must also be multiplied by vscale.  Therefore vscale*vts is 

interpreted as vmax .  Since vts is 1 and planck is 64, vscale becomes 32 for to 

satisfy all of the above conditions.  

But, not only does this describe the ratio of interpreted velocities inside 

and outside the pusher, this scenario sets the ratio of the quantum and classical 

time scales in the code.  tcptq (short for “number of Timesteps Classical Per 

Timesteps Quantum”), which represents ∆t ∂t , sets how many times the 

particle pusher is called per quantum time step.  Since each dt inside the pusher 

is really ∂t  outside the routine, tcptq must also be equal to vscale.  It has also 

been found empirically that vscale = tcptq = 32 provides a simulation 

consistent with physics, given planck = 64 and vts = 1.  
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We ask that the reader bears in mind that this structure is in the code not 

simply to be confusing.  The extra parameters exist because they provided a 

means to test ideas and alternative schemes until one that worked correctly was 

found.  Further tests on this aspect of the method may become important in the 

future.  However, for those who simply wish to adjust the code for other 

purposes, we recommend that the user only adjusts tcptq and leave rest of the 

code to set vts = 1, planck = 2 * vscale, and vscale = tcptq.  

The last note of empirical knowledge regarding the parameters of the 

code regards the number of virtual classical particles per quantum particle.  The 

quantum code reinterprets the nspecies parameter, which meant the number 

of different plasma species in the plasma code, instead as the number of 

different quantum particles.  This reinterpretation allows us to use many of the 

existing mechanisms in the plasma code for organizing particles by species to 

organize them by quantum particle instead.  So, formerly the number of 

particles per species, npx is the parameter used to describe the number of 

virtual classical particles per quantum particle.  

Since these virtual classical particles must start from individual grid 

points of the initial wavefunction, for a complete and regular sampling, it seems 

reasonable to say that npx should be proportional to the number of grid points, 

nx.  So the question becomes what is the number of particles per grid point, 

npx/nx?  Since the Fourier transform of a function on nx grid points also has a 
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resolution consisting of nx grid points, one plausible answer is nx.  So npx = 

nx*nx.  This hypothesis is borne out by empirical tests: setting npx to be at 

least this value provides consistent physics, while setting npx below this value 

causes the wavefunction to shred itself into noise in a few time steps.  

However, this is not to say that other solutions are impossible.  This 

simple method of sampling is one that blankets phase space with a density of 

classical paths sufficient to provide correct results.  But it is the belief of this 

author that there exist solutions that are more clever, some of which will be 

suggested in Chapter VII - Future Work.  

F. Alternative implementations

In the course of developing the theory and the code for this project, a 

variety of other schemes for almost all aspects of the calculation were also 

conceived.  Those that were attempted are described in Appendix A, some of 

which may be useful or more appropriate for applications other than those 

shown in this dissertation.  Those that have been speculated upon are described 

in Chapter VII - Future Work.  
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IV. Validation 

A. Output

After each quantum time step, the quantum PIC code saves data into a 

variety of files.  It runs a series of diagnostics on the wavefunctions, measuring 

potential energy, kinetic energy, total energy, average position, l l , 

average momentum, electrostatic energy, and the range of the determinant.  In 

addition, it saves all quantum wavefunctions at all time steps.  Besides making it 

possible to restart the simulation from any point, this quantum data file enables 

the user to examine the entire time sequence of the simulation for any purpose.  

In the early stages of development of this code, these data sets were 

studied to test the correctness of the simulation.  A feedback process was 

developed to thoroughly test the code against solutions to typical quantum-

mechanical problems.  Specific well-known phenomena unique to quantum 
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mechanics were used to probe for possible problems in specific parts of the 

code.  This process was an effort to be sure that the code was as faithful as 

possible to the physics.  The test cases used and their results are described in 

this chapter.  These processes are demonstrated here to provide a guide for 

future work with this code or future extensions on or extrapolations of this 

code.  

B. Free-Space Gaussian

The first test case studied is the evolution of a single Gaussian in free 

space.  This calculation is a rigorous test of the code because it precisely tests 

some of the most basic behavior found in quantum mechanics. The initial 

conditions inserted into the code represented a Gaussian of known standard 

deviation , initial position x0 , and initial momentum p0  of the form

  
(x,t = 0) =

1

2π
exp −

(x − x0 )2

4 2

 

 
  

 

 
  exp i

p0 x

h
 
  

 
  (65)

The space of the code was sufficient in size to allow numerous significant 

properties of the wavefunction’s evolution to be measured before it began to 

interact with the edges of the simulation in any measurable way.  The Gaussian 

was centered in the space of the simulation, the external potential routine was 

shut off, and the initial momentum and the charge were set to zero. 
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 For any observable ˆ A , the expectation value of ˆ A  of a wavefunction  

is calculated using

ˆ A = *( x) ˆ A (x)dx∫ (66)

The energy of the wavefunction is measured using the expectation value of the 

Hamiltonian ˆ H  

  
ˆ H = *( x) −

h
2m

∂2

∂x2 + V(x)
 

 
  

 

 
  (x)dx∫ (67)

and the standard deviation using

∆x( )2 = ˆ x 2 − ˆ x 
2

(68)

The standard deviation in space of a wavefunction which begins according to 

(65) will increase as a function of time according to 

  
∆x( )2 = 2 1 +

h2t2

4m 2 4

 

 
  

 

 
  (69)

while its total energy remains constant.  Frames from the successful modeling 

of the evolution of this wavefunction are shown in Figure 8.  
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Figure 8. Four frames of the evolution of a stationary Gaussian in free space.

The representation of the wavefunction in Figure 8 is the following.  The 

horizontal axis of all graphs is space.  Color indicates the phase of the 

wavefunction, where cyan is positive real, purple is positive imaginary, red is 

negative real, and so on around the color wheel.  The legend for the phase-

color mapping is shown using the color wheel in the frames, assuming a set of 

real and imaginary axes superimposed on the wheel.  This mapping will be 

used for all further plots of phase.  The top bar shows the wavefunction’s phase 

as color and probability density, (x)
2
, as the strength of that color.  The 

middle tick mark is the average position of the wavefunction ˆ x , and the two 
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other tick marks are ˆ x −∆ x  and ˆ x +∆ x , as defined by (66) and (68).  The 

vertical axis of the middle graph is (x)
2
 while color is used for phase, and the 

lowest graph shows the real and imaginary parts of (x)  plotted 

simultaneously.  

The earliest versions of the quantum PIC code presented significant 

problems.  After locating a working range of algorithmic configurations and 

parameters and debugging the parallel aspects of the new code, the largest of 

the remaining problems was that the energy of the wavefunction decreased on 

the order of 1% per time step.  The first clues towards the cause of this energy 

loss was through a careful analysis of the data, including a translation of the 

wavefunction data into audible sound.  A code was developed to translate a 

data set of floating-point numbers into a format that computer hardware could 

transform into current impulses delivered to a pair of speakers.  At one time 

step, the real part of the wavefunction was used to supply sound to the left 

channel, and the imaginary part for the right channel.  The speakers play the 

data in a loop fast enough for the frequency range of the wavefunction to be 

heard in the audible frequency range.  By playing the data at successive time 

steps, the change in the data, as the wavefunction evolves, can be heard.  

What was observed in the data using this technique was that the 

frequency distribution of the wavefunction was changing from the beginning 
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of the simulation to the end.  In particular it was noted that the higher 

frequencies, which correspond to the higher momentum components of the 

wavefunction, were being attenuated as the wavefunction evolved.  If the 

higher momentum components of the wavefunction were decreasing in 

strength relative to the lower momentum components, that could be enough to 

explain the energy loss.  

Assuming that this higher momentum attenuation was how the energy 

was being lost guided us to focus on particular parts of the code.  This clue led 

us to the technique used in the wavefunction reconstruction routine to 

“deposit” the virtual classical particles’ contributions onto the grid.  At the time, 

the technique used was a deposit local to the virtual classical particle’s final 

position, very similar to the charge deposit of the plasma code.  By analyzing 

the effect of the deposit as a convolution of the “ideal” wavefunction with a 

weight function that describes the deposit technique, it was found that the 

consequence of using this deposit technique could explain both the rate of the 

energy loss and the high-frequency attenuation heard earlier.  

A number of techniques (described in greater detail in Appendix B) were 

used to attempt to decrease that energy loss, but the solution found to preserve 

the energy best (that is, with variations that are indistinguishable from round-

off error) primarily involved substantial changes in the wavefunction 

reconstruction routine.  Chapters II and III presents the solution that worked 
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best.  This solution produces a wavefunction whose measured width matches 

(69) as a function of time with variations indistinguishable from round-off error 

due to the single-precision floating-point variables used.  In addition, when the 

initial momentum is nonzero, the simulation shows a constant translation of the 

Gaussian between frames consistent with theory.  

C. Simple Harmonic Oscillator

The next problem type investigated is the simple harmonic oscillator 

(SHO) problem.  This calculation is among the simplest that requires the 

quantum particle to interact with its environment and has a behavior that is 

very well known and easy to recognize.  The implementation requires the same 

conditions and as the free space Gaussian with the addition of an external 

potential of the form 

VSHO (x) =
1

2
m 2 x2 (70)

In the code this potential is implemented as shown in Listing 6.  Note that both 

the potential and its negative derivative must be introduced into the electric 

potential and field arrays.  omegasq represents 2 .  

      real :: omegasq
      parameter(omegasq = (1.0/8.0)**2) 

. . .
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      do k=1,nblok
        joff = noff(k) - 2
        do j=1,nxpmx 

!            ! Simple Harmonic Oscillator
            xt = j + joff - nx/2
            pt(j,l,k) = pt(j,l,k) + &
     & adjustment*0.5*omegasq*(xt**2) 
            fx(j,l,k) = fx(j,l,k) - &
     & adjustment*omegasq*xt 

        enddo
      enddo

Listing 6.  Code that introduces a simple harmonic oscillator potential into 

the electric potential and force arrays.  

As demonstrated in Listing 6, the effect of the external potential must be 

introduced into both arrays consistently.  The adjustment multiplier is needed 

because of the unusual units pt and fx have due to their history as part of a 

plasma code.  xt provides the coordinate for the potential while accounting for 

the partitioning due to the PIC techniques.  

The initial conditions for the first test was an arbitrary Gaussian to see if 

omegasq was compatible with the simulation.  Once an appropriate value of 

omegasq was selected, a Gaussian corresponding to the ground state of the 

SHO was used.  Frames of this simulation are shown in Figure 9.  
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Figure 9. Four frames of the evolution of the ground state of the simple 

harmonic oscillator.  

We were expecting that the simulation would be consistent with the 

analytical behavior of the ground state, n = 0 .  In particular, the state should 

remain as it is with the exception of an evolution in its overall phase.  As 

indicated in Figure 9, the quantum PIC code gave the correct results, and easily 

maintained the eigenfunctions for hundreds of time steps.  

Next, we attempted other SHO eigenstates with higher energy.  In 

particular, we supplied the code eigenstates with quantum numbers n=1, n=5, 

and n=7.  Examples of their structure are shown in Figure 10.  
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Figure 10. Frames from simulations of the n =1 , n = 5 , and n = 7  eigenstates 

of the simple harmonic oscillator.  

What was also seen in the evolution of these eigenstates was that the 

rate of the evolution of their phase was distinct from each other and in a 

manner consistent with quantum mechanics, in particular, according to their 

energy eigenvalues. 54  This is a property that is possible to exploit using a 

correlation calculation,  

c( ) ≡ (t + ) (t) dt∫ (71)

or, in the position representation, 
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c( ) = *( x,t + ) (x,t) dxdt∫∫ (72)

The Fourier transform of the correlation c  should show the energy spectra of 

the system, presenting peaks that correspond to the energy eigenvalues of the 

eigenstates in the system.  Inserting the data from the SHO eigenstate tests each 

showed one solitary peak, and each peak’s frequency corresponding to the 

energy of the state, as we were expecting.  

The next question is: can the code handle multiple eigenstates at once 

and preserve them independently of each other?  To answer this question, a 

superposition of these eigenstates was used for the initial conditions, evolving 

as seen in Figure 11.  
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Figure 11.  Three frames from the evolution of an arbitrarily chosen 

superposition of the n = 0 , n =1 , n = 5 , and n = 7  eigenstates of the simple 

harmonic oscillator.  

The resulting energy spectrum is shown in Figure 12.  
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Figure 12.  Energy spectrum of the simulation shown in Figure 11.  

The energy spectrum clearly shows four peaks, at relative energies that one 

would expect, based on the theory, for the superposition the code was given.  

The reader may recall that this simulation is supported only by a 

network of classically calculated paths, whose contributions are regularly 

recoalesced using a process that relies heavily on cancellations due to phase.  

Before running these simulations, it was conceivable that superpositions might 

not be successfully maintained because of noise, errors, or crossover between 

modes of the system.  Instead, these results show that the quantum PIC code 

can maintain a simulation of an arbitrary superposition of eigenstates, and with 

enough fidelity for the energy spectrum of the system to be extracted from a 

simulation of sufficient length.  
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D. Infinite Square Well

The next system of interest is the infinite square well.  This system is 

important because of its primary features: its well-defined and simple boundary 

conditions:  

l(x) = 0  for x ≤ 0  and x ≥ L (64)

while the wavefunction is unconstrained between these boundaries.  This type 

of constraint is one of the most conceptually convenient ways to precisely 

define a method to “contain” a collection of particles.  

However, the methods to achieve this particular containment and 

demonstrate this achievement in this quantum PIC code are not immediately 

clear.  A discussion of the possible combinations to attain this containment and 

a presentation of the final solution is given in Section D of Chapter III.  We now 

discuss the test cases used to determine which of those combinations gives the 

most accurate simulation.  

The first test case that revealed a problem with the implementation of 

the boundary condition was a Gaussian, of the form in (65), with a significant 

nonzero initial momentum inside the infinite square well.  Figure 13 shows the 

progression of a successful bounce.  
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Figure 13.  A moving Gaussian bouncing off a wall of the infinite square well.  

Theoretically, the wavefunction should encounter the wall of the well, then 

bounce back without losing energy.  The initial simulations showed a 

preservation of total energy until the time step that the probability density of 

the wavefunction at the wall became significant, after which the wavefunction 

suffered a measurable energy loss.  Since the energy loss only began when the 

wavefunction “touched” the wall, this evidence strongly suggested that 

incorrectly defined boundary conditions caused the loss.  

More tests were run using other combinations of boundary condition 
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parameters while bouncing the Gaussian off the wall.  The prescription of this 

test relied on observing a decrease in the energy diagnostic after the bounce.  

While this method did rule out combinations that resulted in gross losses, it 

could not distinguish among the combinations that were “close” to being 

correct.  It was realized that the energy diagnostic itself is also not clearly 

defined at the boundary for some of the same reasons this investigation was 

underway.  So it became clear that this test was not sufficient, and a new 

method of testing had to be found.  

Utilizing the eigenstates of the infinite square well became the next 

choice to rigorously test the boundary condition methods.  The behavior of 

these eigenstates relies on the properties of both boundaries simultaneously, so 

any “bleeding” of energy due to the boundaries should be clearly evident.  If 

we can gain confidence in an accurate simulation of these eigenstates, then it 

seems plausible, given the behavior seen in the SHO case, that any 

superposition of these eigenstates will also be correct.  

The properties of these eigenstates are fairly straightforward.  The 

eigenstates are described by

n (x) =
2

L
sin

nπx

L

 
  

 
  (73)

where n  is the quantum number of the eigenstate, a positive integer, and L  is 

the width of the well.  As in the SHO, an eigenstate’s phase will evolve at a 
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particular frequency proportional to the energy eigenvalue of the state, which 

takes the value  

En =
h2n2

8mL2 , (74)

and, obviously, remains constant throughout the existence of the state.  

Early tests easily showed how incorrect boundary conditions presented 

problems maintaining the eigenstate.  Most of the incorrect possibilities 

introduced kinks at both edges of the wavefunction that propagated inwards.  

The kinks would increase in strength and in number, eventually dominating 

over the wavefunction entirely.  Eigenstates with n=1 through n=11 were used, 

and this behavior was seen in all such cases.  These tests eliminated the 

wavefunction extrapolation and virtual classical particle phase adjustment 

candidates discussed in Section D of Chapter III.  It was found that modest 

guard cells in which the wavefunction was zeroed were needed, and the virtual 

classical particles were indeed reflected (without which the wavefunction simply 

disappears).  Some of these eigenstates are shown in Figure 14.  
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Figure 14.  Example eigenstates of the infinite square well.  Frames from the 

n=1, n=2, n=7, and n=11 cases are shown.  

Upon establishing the grids where the wavefunction is to be zeroed, that 

defined the walls of the well and, consequently, the width L  of the well.  The 

next question is: where should the virtual classical particle be reflected?  Our 

first hypothesis was at the walls, in particular, the grid points where the 

wavefunction becomes zero.  This hypothesis was attempted, and qualitative 

properties, such as their long-term stability and evidence of phase evolution, of 

the eigenstates were preserved.  

However, upon close inspection of the precise rate of its phase evolution, 
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it became clear that the eigenstate was not behaving as if the well was of width 

L  but, instead, of width L −1 .  The precise positions of boundaries and particle 

reflections were carefully rechecked, and the result was confirmed.  

Other experiments were attempted.  When the left ( x = 0  boundary) 

particle reflection was displaced left by one, the eigenstate behaved as if the 

well expanded by one.  Likewise, when the right ( x = L  boundary) particle 

reflection was pushed right by one, the eigenstate behaved as if the well 

expanded by one.  Finally, when the reflection points were each placed one-half 

grid point beyond their respective wall, the eigenstates behaved as if they were 

in a well of width L , making this measurement consistent with the positions of 

the explicitly zeroed wavefunction.  

This behavior was independent of all other computational aspects of the 

code.  It was consistent in all observed eigenstates and was seen when the 

number of grid points in the simulation was adjusted arbitrarily.  It seemed 

that, when the reflection points are close to the edge of the wavefunction 

zeroing, the precise behavior of the wavefunction are more dependent on the 

reflection points rather than the zeroed edge of the wavefunction.  In addition, 

this dependence shows the state responding to a wall one-half grid point closer 

than the reflection point.  While this empirical result was a surprise to us, this 

combination of parameters also allowed the Gaussian to bounce off the wall 

without a measurable loss of energy.  
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Besides determining the boundary conditions necessary to maintain a 

state in an infinite square well, this investigation shows how precisely 

properties of the quantum system can be measured.  The numerical values of L  

in this investigation were 112, 120, 124, 248, and 252.  By observing the 

frequency of the eigenstate oscillation, it was possible to distinguish between a 

well of width 252 versus a well of width 251, or 251.5, while varying a range of 

other independent parameters.   Such precise determinations should provide 

support for this code’s utility and robustness.  

E. Barriers

Other attempts at duplication of well-known quantum problems were 

made.  The finite square well, and a variety of quantum barrier problems were 

attempted.  For example, the square barrier potential, 

Vsquarebarrier(x) ≡
V0, if 0 < x < w

0, elsewhere

 
 
 

, (75)

was implemented as shown in Listing 7.  

      parameter(width = 4, height = 16.0) 

. . .

      do k=1,nblok
        joff = noff(k) - 2
        do j=1,nxpmx 
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!            ! Rectangular barrier or well 
            xt = (j + joff - nx/2)
            if (abs(xt).le.width) then 
             if (abs(xt).gt.(width-2)) then 
              if (xt.lt.0) then 
                pt(j,l,k) = pt(j,l,k) + &
     &                  adjustment*height*0.5*(xt+width) 

                fx(j,l,k) = fx(j,l,k) - 
adjustment*height*0.5 

              else
                pt(j,l,k) = pt(j,l,k) + &
     &                  adjustment*height*(width-xt) 

                fx(j,l,k) = fx(j,l,k) + 
adjustment*height*0.5 

              end if
             else 
                pt(j,l,k) = pt(j,l,k) + adjustment*height 
             end if 
            end if 

        end do
      end do

Listing 7.  Code sample implementing a (nearly) rectangular well.  

Because a value of the derivative of the potential is required to make the force 

array consistent with the potential array, the code cannot handle a potential 

with sharp discontinuities.  Consequently, this code implements a barrier 

potential with very steep edges.  

nx, the width of the simulation, is used to center the barrier.  

The problem with implementing this barrier is that this potential 

possesses sharp boundaries.  Such properties contradict a basic assumption of 

the code that the grid points are sufficiently fine to resolve all features of 

interest as continuous functions.   Consequently it was little surprise that 

quantitative measurements (specifically, transmission and reflection 
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coefficients) on simulations resulting from using this potential did not precisely 

match theory, but much of the qualitative features were clearly evident.  A 

demonstration of quantum tunneling, with partial transmission and reflection, 

is shown in Figure 15.  

Figure 15.  Evolution of a Gaussian wavefunction colliding with a square barrier 

eight grids wide in the center (not drawn).  The energy of the Gaussian is just 

enough for a significant amount of transmission and reflection, seen in the last 
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frame.  

It may be possible to implement the ideal rectangular potential by customizing 

elements of the particle pusher in a fashion similar to the boundary condition 

implementation used for infinite square well.  These possibilities will be 

discussed in Chapter VII - Future Work.  

F. Fermion Statistics

Throughout the process of building the code, the routines, arrays, and 

loops were designed to handle multiple interacting particles.  Mixed with the 

above tests were ones involving up to sixteen particles, but the earliest 

experiments of significance on more than one quantum particle involved 

quantum particle statistics.  The particular category of quantum statistics that 

we wanted to address first was the statistics of fermions since we ultimately 

wish to apply this code to modeling electrons, categorized as fermions.  The 

“holy grail” would be to model the full multiparticle wavefunction, however, 

the memory requirements to store, in the position representation, such a 

wavefunction scales exponentially as a function of the number of quantum 

particles.  The memory available in today’s largest computers would limit the 

model to a half-dozen quantum particles.  

Therefore, it is in our interests to determine if there exist alternative 
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means of modeling fermionic behavior and the extent of their validity.  We use 

the following approach.  During the simulation, we model the quantum 

wavefunctions assuming they are representable as in (54).  Interactions use a 

“mean-field approximation”.  As a post-processing step, we build the 

antisymmetrized multiparticle wavefunction using the data set generated by 

the simulation.  The first case we will present involves two electrons, so their 

antisymmetrized wavefunction would be 

12 (x1, x2,t) = 1(x1,t) 2 (x2,t) − 2 (x1,t) 1(x2,t)( )N12( t) (76)

where N12(t)  is a normalization factor such that 12 (t) 12(t) =1 , for all t .  

Diagnostics and tests of interest would then be performed on 12 .  For 

example, the correlation calculation would be 

c( ) = 12(t + ) 12(t) dt∫ (77)

or, in the position representation, 

c( ) = 12 *( x1, x2 ,t + ) 12(x1,x2,t) dx1dx2dt∫∫∫ (78)

As before, the Fourier transform of c  should give the energy spectrum of 12 .  

The first system studied using this approach was two fermions in an 

infinite square well.  Their electrostatic interactions were turned off so we could 

focus on behavior involving the statistics of the system.  A fundamental aspect 

of their behavior we wanted to observe was the Pauli Exclusion Principle, 
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where no two fermions in a given system had the same quantum number.  

Two sets of initial conditions were used.  The first loaded the 

wavefunction arrays each with an arbitrary superposition of the five lowest 

eigenstates of the infinite square well.  The phases of the coefficients of the 

eigenstates were different for each particle.  The second initial conditions 

represented a pair of arbitrarily-chosen, low-energy Gaussians, beginning in 

different parts of the well with opposite initial momenta.  While designed to 

resonate the lowest energy eigenstates, these Gaussians were an arbitrary 

choice indeed.  Frames from these simulations are shown in Figure 16.  

Figure 16.  A pair of frames each from a pair of wavefunctions in an infinite 
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square well.  The left frames are a run using a superposition of eigenstates, 

while the right frames are from a run using arbitrarily chosen Gaussians.  

A new code was constructed to calculate 12  and its energy spectrum 

from the 1 (x1,t)  and 2 (x2 ,t)  data generated by the quantum PIC code.  It was 

found that the most efficient manner to calculate the Fourier transform of c  

was to reinterpret (78) as a convolution in time.  Applying the convolution 

theorem to (78) yields

˜ c ( ) = ˜ 
12 *( x1, x2 , ) ˜ 

12(x1, x2 , ) dx1dx2∫∫ (79)

where ˜ c  and ˜ 
12  are the Fourier transforms in time of c  and 12 , respectively.  

With regards to computation, this form suggests that a Fourier transform in 

time, rather than many integrals in time (suggested by (78)), should be 

performed on 12  first, then the integrals over space are performed.  Using the 

FFT reduces the computation time from O(N2) to O(N lg N), where N is the 

number of time steps.  

The correlation code was carefully designed to efficiently handle this 

non-trivial problem.  The runs described here are 128 grid points wide and over 

65536 time steps in length.  While the output of the quantum PIC code was 128 

MB in size, the resulting data set representing the complete time sequence of 

12  in double-precision was 16 GB in size.  16384 FFT calls on this data set were 

needed.  This correlation code was designed to efficiently utilize processors in 
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parallel.  Initialization involved distributing the 128 MB data file across the 

processors.  Given a particular value of x2 , the processors generated a double-

precision form of one slice, identified by x2 , of 12  at a time.  12  was calculated 

for all t  in each processor while partitioned along x1  between processors.  The 

FFTs in t  were performed, then the integral along x1  in each processor was 

calculated and accumulated for each frequency, after which the code directed 

the processors to move on to the next value of x2 .  Once the accumulation 

finished for all x2 , the correlation data as a function of frequency was 

accumulated between processors, the final data set was saved to disk, and the 

code ended.  

The energy spectrum of one particle eigenstate in the infinite square well 

is given by (74).  Therefore, the frequency of oscillation for an eigenstate in this 

two particle system is given by 

n,m =
h2

8mL2 n2 + m2( ) (80)

where n  and m  are the two integer quantum numbers of the two-particle state.  

We would expect to find peaks consistent with (80), however, if this system 

obeys the Pauli Exclusion Principle, we should see none where n  and m  are 

equal.  

The energy spectrum resulting from the five eigenstate case is shown in 

Figure 17.  
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Figure 17.  Energy spectrum from the evolution of a fermion pair initialized 

using the five lowest energy eigenstates of the infinite square well.  The 

frequencies marked in red are those disallowed by the Pauli Exclusion Principle.  

The blue graph is the energy spectrum.  The base of the lowest peak shows 

spurious noise because it is very strong and has finite width.  

We find four points of good news.  First, we do see peaks, which means 

that a discrete finite energy spectrum is evident in the system, which is plausible 

given that these effects are supposed to be quantum.  Second, we see that the 

peaks are well aligned and consistent with the frequencies predicted by (80), 

which are marked with black lines.  Third, the peaks we do see are at 

frequencies we would expect, that is, where the quantum numbers are different 
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(e.g., (1,3), (2,4), (1,5), and (3,5)) and in the range we would expect (between 

states 1 and 5, inclusive).  Fourth, we do not see peaks where we do not expect 

them, in particular, where the quantum numbers are the same ((1,1), (2,2), (3,3), 

and (4,4), marked in red.  Note that (5,5) is degenerate with (1,7).).  This finding 

is important because this absence is consistent with the Pauli Exclusion Principle, 

which was a phenomena that we intended to duplicate.  

We come to the, not bad, but unexpected news.  There are some peaks 

that we were hoping to see (such as (1,2)), but did not.  This could be explained 

because the choice of the coefficients was arbitrary, so it was not clear that such 

states would appear.  In addition, the spectrum shows particular peaks ((2,6), 

(1,7), (4,6), (3,7)) that are unexpected.  While allowed by the Pauli Exclusion 

Principle, these frequencies are not directly explained by the eigenstates input 

into the code.  Their presence may be explained by small differences between 

the “ideal” set of the eigenstates and the actual numerical, discretized 

wavefunction loaded as initial conditions into the wavefunction arrays.  They 

could also be noise or numerical error developed as the wavefunction evolved.  

In either case, their magnitude is quite small compared to the primary peaks at 

the expected frequencies.  

Figure 18 shows the energy spectrum resulting from using a pair of 

arbitrarily selected Gaussians as initial conditions.  
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Figure 18.  Energy spectrum from the evolution of a fermion pair initialized 

using arbitrarily chosen Gaussians.  

The good news is, again, we find plenty of peaks where they should be, 

and find no peaks where the should not be (where n = m ).  We also observe 

much higher energy states ((5,7), (3,9)), than we saw in the previous spectrum.  

Although not identical, we observe much of the same energy structure using 

these initial conditions as we did using much more carefully chosen initial 

conditions.  

The results seen in this chapter provide support for the utility of these 

codes.  The observation using the arbitrarily chosen Gaussians is significant 
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because it tells us that it is not necessary to know the spatial or energetic 

structure of a system a priori in order to use these modeling and analysis 

techniques to extract useful information (such as eigenfrequencies) about the 

system.  Inputting low-energy Gaussians is sufficient to excite the lower, 

although not necessarily the lowest, energy eigenstates of the system.  

Experimentation given such a system becomes a simple procedure of choosing 

modestly judicious initial conditions and running the codes.  The level of 

flexibility of the code makes the above possible.  And, as we can see in the 

energy spectra, the noise in the data is very small, while the strength and clarity 

of the peaks are very significant.  These characteristics indicate the high quality 

of the simulation and analysis.  The high flexibility and high quality of the 

code’s simulations have significant utility when we wish to better understand 

quantum systems we encounter, especially those about which we know little.  
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V. The One-Dimensional Atom

A. The Problem

Our next system of interest is the one-dimensional atom.  We define the 

one-dimensional atom as a number of fermionic electrons bound to a nucleus 

with a charge equal in strength yet opposite to that of the sum of the electrons’ 

charge.  The spatial dependence of the nuclear charge is defined by 

Vnucleus(x) ≡ x (81)

This problem was chosen for because it is analytically difficult while being 

compatible with the quantum PIC code, and it features many of the technical 

challenges that this code is intended to address.  In addition, it allows us to 

investigate behavior known to occur in its three-dimensional counterpart.  
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B. The One-Electron Case

We attempted a theoretical analysis of one electron in a one-dimensional 

atom to estimate the energy of the ground state.  We first used a Bohr-

Sommerfield quantization (“p dq”) method to estimate the ground state 

energy, but the lowest result found was derived using a variational approach 

with a Gaussian wavefunction of the form described by (65) 

  
(x,t = 0) =

1

2π
exp −

(x − x0 )2

4 2

 

 
  

 

 
  exp i

p0 x

h
 
  

 
  (65)

with p0  set to zero and x0  centered on the nucleus.  Evaluating the energy of 

this wavefunction with the potential described by (81), then finding the 

minimum of the energy as a function of , gave the following estimate for the 

ground state energy

  
E0 ≈

3

2

2h2

2πm
3 (82)

Implementing the one-dimensional atom potential in the code was 

straightforward.  The external potential described by (81) was implemented 

using a loop in the external potential routine shown in Listing 8.  

      real :: slope
      parameter(slope = 1.0/4.0) 

. . .
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      do k=1,nblok
        joff = noff(k) - 2
        do j=1,nxpmx 

!           ! 1-D atom potentials
            xt = j + joff - nx/2
            if (xt.lt.0) then 
              pt(j,l,k) = pt(j,l,k) - adjustment*slope*(xt) 
              fx(j,l,k) = fx(j,l,k) + adjustment*slope 
            else if (xt.gt.0) then 
              pt(j,l,k) = pt(j,l,k) + adjustment*slope*(xt) 
              fx(j,l,k) = fx(j,l,k) - adjustment*slope 
            end if

        enddo
      enddo

Listing 8.  Code listing that implements the one-dimensional atom 

potential.  xt is the position relative to the center of the potential.  

Setting the potential’s slope to 1/4 was found to provide stable simulations 

while providing adequate confinement for systems that we found interesting 

and fit within a 128 grid point space.  A variety of initial conditions based on 

(65) were attempted for these early experiments.  Naturally, the electron charge 

was set to match the magnitude of the charge implied by slope.  

The initial conditions that were attempted involved a Gaussian of the 

form of (65) with zero initial momentum, a standard deviation given by the 

calculation leading to (81), and x0  offset from the center of the potential.  The 

offset was provided to excite the higher states in addition to the ground state.  

Frames from this simulation are shown in Figure 19.  
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Figure 19.  Frames from the evolution of an electron bound to a one-

dimensional atom.  

The result of performing a correlation calculation, as described in Section C of 

Chapter IV, on this simulation is shown in Figure 20.  
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Figure 20.  Energy spectrum of a simulation shown in Figure 19.  The horizontal 

axis is mode number, which is proportional to the frequency of oscillation of an 

eigenstate of the system.  This spectrum was derived from 8192 time steps of 

the simulation.  

The ground state frequency seen in the simulation was very close to that 

predicted by (82).  The frequency corresponding to (82) translates to mode 

number 38.8 in the graph of Figure 20.  Interpolated between points, the lowest 

mode is observed to be at 38.55, just under the prediction using (82).  Excited 

modes seen are estimated to be at 88.55, 123.15, 154.85, 182.55, and 209.35.  

Analyzing simulations using alternative initial conditions also show excited 

states at these mode frequencies.  

The discrepancy between (82) and the observed ground state energy is 

very plausible.  (82) was an estimate based on a variational method, and would 
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provide an upper bounds to the ground state energy, while the actual ground 

state energy can be even lower.  The simulation’s prediction, being close to the 

analytical prediction but lower, is consistent with the analysis.  The closeness of 

these results lends support to the correctness of the code.  The code is also able 

to easily show other energy eigenvalues, showing quantitative measurements 

of the one-dimensional atom’s energy structure using very little analytical 

work.  The computational requirements for this simulation are very modest: a 

few hours on a single modern personal computer.  

C. The Two-Electron Case 

The next case of interest was the two-electron one-dimensional atom.  

We are guided by the methods explored involving the two fermion infinite 

square well, described in Section F of Chapter IV.  We assume that we may 

choose the initial conditions to be a subjective estimation of the states we expect 

to find, as indicated by the aforementioned investigation.  We present our 

choice of a pair of Gaussians for the pair of electrons: one is placed in the center 

of the well, and the other is offset from the center by approximately four 

standard deviations of the Gaussians.  The intention is to excite the lowest 

modes of the two-electron system.  The charge on the electrons is set to half 

that of the one-electron case, and they are allowed to interact with each other 

97



electrostatically.  Frames from their evolution is shown in Figure 21.  

Figure 21.  Four frames from two-electrons bound to a one-dimensional atom.  

In this figure, the two wavefunctions are shown in two color bars at the top and 

superimposed in the middle graph.  The lowest graphs show the real and 

imaginary parts of the second wavefunction.  The first wavefunction is begun 

centered in the well, and the second is offset.  Note how the second 

wavefunction oscillates around the first, which is nudged by the second.  

After the simulation was complete (taking less than a day on a single 
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processor computer), the data was analyzed as prescribed in Section F of 

Chapter IV, in particular computing (76) and (79) as described in that section.  

The resulting energy spectrum is shown in Figure 22.  

Figure 22.  Energy spectrum of the fermionic two-electron simulation shown in 

Figure 21.  The horizontal axis is mode number, which is proportional to the 

frequency of oscillation of an eigenstate of the system.  This spectrum was 

derived from 8192 time steps of the simulation.  

The resulting energy spectrum shows five well-resonated modes and three 

additional modes.  Note that the energy of the lowest peak has a mode number 

that is slightly greater than the sum of the lowest two modes seen in the one-

electron case (138.55 > 38.55 + 88.55).  The discrepancy is most likely due to the 

mutual electrostatic repulsion of the electrons.  This seems plausible as a “(1,2)” 

state, and indicates consistency with the Pauli Exclusion Principle.  With one run, 
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we are able to clearly observe a portion of the energy structure of a two-

electron fermionic system.  Again, at a several hours per simulation run, and 

less than an hour for the analysis, the computational demands are modest.  

D. Eigenstate Extraction

In the course of writing the correlation code that computes (79), it was 

discovered that additional important information about the system can be 

generated from the same analysis.  A portion of this discussion is similar to one 

independently conceived by Neuhauser 58 and Decyk 59 , but the regime of the 

application is different.  Consider the Fourier transform in time of the 

wavefunction 

˜ ( ) ≡ (t) exp 2πi t( ) dt∫ (83)

Applying the convolution theorem to (71) gives

˜ c ( ) ≡ ˜ ( ) ˜ ( ) (84)

˜ c ( )  is simply the inner product of ˜ ( )  with itself, essentially describing 

“how much” of the wavefunction is oscillating at a particular frequency .  

For the sake of simplicity, consider what happens when (t)  is an 

energy eigenstate.  Suppose (0)  is an energy eigenstate en  with energy 
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eigenvalue En .  Therefore, according to (1), 

  
(t) = exp(−

iEnt

h
) en (85)

Consequently, with (83), 

˜ ( ) = ( −
En

h
) en (86)

which results, using (84), in a peak in ˜ c  at =
En

h
.  But (86) also says that ˜ ( )  

contains a description of the energy eigenstate en  at that same frequency.  

As an interim step to computing ˜ c ( ) , the correlation code has already 

been computing ˜ ( )  in the position basis.   We can serendipitously use the 

existing structure of this code in the following way.  If we save a portion of 

˜ ( )  at the right point in the code, we can extract an entire energy eigenfunction 

for every energy eigenvalue we identify in ˜ c .  

Another conceptual approach to this technique is an analogy to tuning a 

radio.  Searching through the frequency spectrum is like tuning the radio.  

Locating and selecting a peak is like tuning the radio to a particular station, 

recognized by its signal strength.  The signal is modulated at that frequency, 

and the radio is designed to demodulate the signal at its carrier frequency and 

provide that station programming.  Likewise, the kernel in (83), given the right 

frequency, will compensate for the inherent oscillation frequency of the 
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eigenstate, and provide the desired signal.  

The correlation code, as described in Section F of Chapter IV, computes 

˜ ( )  in slices, so the task became saving the desired slices of the Fourier 

transformed data set (32 MB for the one-electron case; 16 GB for the two-

electron 12 ) that represents ˜ ( ) , and then collating the pieces into a format 

convenient to display.  The result of the one-electron case at five of the stronger 

peaks seen in Figure 20 are shown in Figure 23.  

Figure 23.  Five energy eigenstates extracted from the one-electron one-

dimensional atom simulation seen in Figure 19.  Note similarities of these states 

to the n=0, 1, 2, 4, and 7 eigenstates of the simple harmonic oscillator.  

Given our experience with the SHO eigenstates, the eigenstates extracted 

from the one-electron simulation show spatial structure that we would find 
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plausible for the one-dimensional atom.  Since the extraction shows that these 

states are those that oscillate with a particular frequency in the time evolution 

of a one-electron , we propose that these are the energy eigenstates of the 

one-dimensional atom.  Their similarity to the SHO eigenstates also gives 

confidence in proposing specific quantum numbers to each eigenstate and, 

correspondingly, the peaks seen in Figure 20.  Simulation runs using variations 

on the initial conditions used in this example result in a different distribution of 

peaks, allowing us to easily locate and extract other eigenstates that interest us.  

The result of the eigenstate extraction on the five lowest peaks, seen in 

Figure 22, of the fermionic two-electron one-dimensional atom is shown in 

Figure 24.  The implementation of this extraction was much more involved than 

in the one-electron case and was first tested using the data sets generated for 

the infinite square well fermion runs described in Section F of Chapter IV.  
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Figure 24.  Five two-electron fermionic eigenstates of the one-dimensional 

atom.  

This visualization possesses some differences from previous figures, so its 

components will be described here.  The phase-color convention is as it was 

described for Figure 8.  The top pictures plot 12 (x1, x2 ) ‘s phase as color and its 

magnitude squared as the strength of that color, with the x1  and x2  plotted 

horizontally and vertically.  The middle graph plots 12 (x1, x2 )  for all values of 

x2  superimposed, with 12 (x1, x2 ) ‘s phase as color and its magnitude squared 

along the vertical axis, and essentially provides a “side-view” of the top plot.  

The lowest plot is the (negative) charge density of 12 (x1, x2 ) , defined as 

(x) ≡ −e 12 (x, x2 )
2

dx2∫ (87)
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Since these plots of ˜ 
12 (x1, x2, )  are the portions of the time evolution of 

12  that oscillate with particular and distinct frequencies, we propose that these 

plots show the energy eigenstates of 12  in the position representation.  The 

spatial structure of these wavefunctions are suggestively similar to two-particle 

products of the states seen in Figure 23.  However, since their energy 

eigenvalues were seen not to be a simple sum of the lowest two eigenstates of 

the one-electron case, it seems plausible that these wavefunctions are not 

identical to simple products of the one-electron eigenstates.  

Besides being inherently antisymmetric, these states’ spatial structure 

becomes more complex as the energy is increased, lending increased 

plausibility for the proposal that they are energy eigenstates.  This 

phenomenon is well-known in the structure of the three-dimensional atom.  

Further, in the eigenstates beyond the ground state, the charge density plots 

show peaks increasing with energy and flanking the central charge 

concentration.  These extra peaks could provide a charge shielding effect, a 

phenomenon also known in the three-dimensional atom as “shell structure”.  

So we also propose that these flanking peaks in the one-dimensional atom also 

show shell structure.  
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E. Conclusion

Using an arbitrary set of initial conditions, a great deal of the physics of 

the fermionic two-electron one-dimensional atom was determined.  The 

simulation and analysis provided a prediction for a portion of the energy 

structure of this system, and, at the same time, provided detailed information 

on the spatial structure of the eigenstates that correspond to that energy 

spectrum.  By choosing more energetic initial conditions, it is a easy matter to 

excite higher states of the system and determine the higher energy eigenvalues 

and eigenfunctions.  The signal-to-noise ratio in both the energy eigenvalue and 

eigenstate data is also very strong, demonstrating the robustness, stability, and 

reliability of the code.  The investigation also led to support for a hypothesis for 

shell structure in the one-dimensional atom, which had not before been 

observed.  These findings show the applicability of code to obtaining results 

about arbitrary quantum systems.  
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VI. Energy Fluctuations in a Plasma

A. The Problem

This next problem has called for the largest simulations yet run using the 

quantum PIC code.  Credit regarding computational resources goes to Jose 

Louis Hales-Garcia and Jan de Leeuw of the Department of Statistics at the 

University of California, Los Angeles, for their permission and generous 

contributions of computational time and assistance in using their 16 node 

Power Macintosh G4/400 cluster. 60  Several computational runs, taking up to 

two weeks of continuous processing time each, were completed on their 

cluster.  This system was combined with software provided by the AppleSeed 

Project 36,61, making the computations possible.  

Numerous properties of a classical plasma are well known.  For example, 

a fundamental behavior of a plasma is the collective behavior of its particles at a 
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frequency known as the plasma frequency.  In the case of an electron plasma, it 

is:

p
2 ≡

4πe2n

m
 (88)

where m  is the mass and n  is the volume density of the plasma particles.  

Modes at this frequency are commonly detected in experiment, and these 

observations are easily predicted by considering perturbations in the collective 

motion of the particles due to their mutual Coulomb interactions. 62  In 

addition, a phenomenon known as Debye screening occurs, which has a 

characteristic length scale known as the Debye length:  

Debye
2 ≡

T

4πe2n
(89)

where T  is the temperature in units of energy.  

It is also well known that plasmas exhibit electromagnetic and density 

fluctuations in thermal equilibrium.  Detailed studies of these electromagnetic 

fluctuations have been performed by Dawson 63,64, Rostoker et al 65, Sitenko et 

al 66, and Akheizer et al 67.  Most of these results were compiled in books by 

Sitenko and Akheizer et al. 68,69  A long tradition in plasma studies using the 

analysis of the fluctuations in a plasma exists because it is a powerful tool to 

investigate intrinsic properties of the plasma, such as its energy, screening 

effects, and diffusion.  The spectra of the longitudinal fluctuations in the electric 
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field of an isotropic plasma 68,69, in the classical case, has long been taken to be: 

1

8π
EL (k, )

2
=

T Im L

L

2 (90)

where L  is the longitudinal permittivity of the plasma.  For systems near 

thermal equilibrium, the fluctuation-dissipation theorem is useful because it 

provides an estimate of the energy in the electric field for all frequencies and 

wavenumbers.  Therefore, one only needs to determine the dielectric 

permittivities to obtain a complete description of this diagnostic of a plasma at 

equilibrium.  The calculation not only includes the energy in the fluctuations in 

the well defined modes of the plasma, such as plasmons (where L ≈ 0 ), but also 

the energy in the fluctuations that are not true propagating waves (where L  is 

far from zero), the so-called quasi-modes associated with the random motion of 

the particles.  It is well known that for high wavenumber and frequency in 

classical plasmas at equilibrium, (90) follows a Gaussian as a function of 

frequency.  

Our problem concerns such fluctuations in the electric field in a hot, 

dense electron plasma while accounting for effects due to quantum mechanics.  

In particular, we wish to consider an electron plasma in the parameter regime 

when the Debye length is similar to the de Broglie wavelength: deBroglie≡ h p .  

The question is: Are these fluctuations in such a plasma different from what 

would be expected in a completely classical model of that plasma?  And: If so, 
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how are they different?  

This question, inspired by a series of articles by Opher and Opher 70-74, 

has importance because of its relevance to stellar evolution.  Stellar models are 

constructed by solving the basic stellar structure equations.  The solution of 

these equations requires specifications of the opacity, nuclear reaction rates, and 

equation of state.  In stellar evolution calculations for normal (non-compact) 

stars, the plasma is treated as a mixture of ideal gases.  

However, previous astrophysical calculations about the plasma of the 

stellar interior assumed only classical mechanics applies.  An electron plasma 

with the plasma parameters of many stellar interiors can reach conditions 

where the Debye length and de Broglie wavelength are similar.  We should 

emphasize that Opher and Opher did not investigate a regime where particles 

are treated quantum-mechanically; they considered classical particles in 

quantum electromagnetic fields.  However, to the extent they incorporated 

quantum mechanics in their plasma calculations, they predict that the resulting 

energy density is measurably different.  They find that, for high densities, as in 

the interior of stars and in the early universe (e.g., for T =100 eV and 

n > 1024cm −3 , when the de Broglie wavelength is comparable to the interparticle 

distance), the assumption that the plasma behave purely classically is not valid.  

If the answer to the above question is yes, that is, if plasmas do behave 

differently from what would be assumed using classical mechanics, then models 
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of stellar evolution must be revised, which then forces estimates regarding the 

ages of the stars and galaxies and the evolution of the early universe to be 

reconsidered.  

The work in this chapter regards using the quantum PIC code to test this 

question.  One of the authors of the work (M. Opher) that inspired this question 

has provided direct assistance with this work.  No other code capable of 

modeling a plasma has as complete a model of quantum mechanics, and, 

because previous quantum codes 75 in this physical regime can handle only a 

few particles (~2), no other code that models quantum mechanics as completely 

can model as large a problem as the quantum PIC code can.  These features 

make this work highly unique.  

B. The Model and the Analysis

The plasma is modeled as a collection of electrons in a one-dimensional 

box mutually repulsed by their electrostatic (Coulomb) fields using the 

quantum PIC code.  Note that this code models the electrons using quantum 

mechanics, while the fields are assumed to be classical.  These properties of this 

model are distinct from those of the model in Opher’s and Opher’s published 

theory.  Their theory uses a three-dimensional model of classical particles and 

studies fluctuations in an electromagnetic field modeled quantum-mechanically.  
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According to the predictions of Opher and Opher’s theory, the difference 

that quantum mechanics makes is seen in the fluctuations due to the non-

propagating quasi-modes in the electric field in the system.  So it is of interest to 

see how different the fluctuation level of these quasi-modes are for a system of 

quantum particles.  Therefore, we focused on studying the energy density of 

the electric field as a function of wavenumber k  and angular frequency , 

which is the left side of (90).   We believe studying this energy density on a 

plasma in the relevant parameter regime should provide evidence needed to 

answer our proposed question.  

C. Implementation

The positions and momenta of the plasma particles are initialized in a 

way inspired by one of the earliest “sheet model” plasma simulations.  23  The 

simulation contains N quantum particles, each begun as a Gaussian of the form 

described by (65).  The distribution of initial momenta p0  is Maxwellian, like 

that of a plasma at equilibrium, at a given temperature.  The distribution of 

initial positions x0  are computed by adding a random Maxwellian distribution 

to the coordinates of regular lattice points in the simulation space.  One lattice 

point is used for each quantum particle, and the variance of the distribution is 

equal to the lattice spacing.  The standard deviation  of the Gaussians are set 
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to four grid points.  The random number generators of the original plasma PIC 

code were used to create the Maxwellian distributions.  Listing 1 shows the loop 

that sets these initial conditions.  Figure 25 depicts the particle placements.  

Figure 25.  Placement of initial positions of the particles.  The dashed lines 

indicate the lattice points, and the solid lines are the particle positions offset 

from the lattice points.  

The code is run using these initial conditions and the infinite square well 

potential.  The number density of the plasma is the number of quantum particle 

divided by the width of the well.  The number of quantum particles ranged 

from 32 to 128, the well widths varied between 1016 and 2040 grid points, and 

the number of time steps was between 512 and 1024.  The resulting quantum 

data sets were each on the order of 256 MB to over 1 GB in size.  To ease the 

memory requirements of the quantum PIC code, adjustments to the virtual 

classical particle array allocation and the use of its indices throughout the code 

were made.  These adjustments enabled the code to reuse the same virtual 

classical particle array for all quantum particles.  

Since the electric fields calculated in the quantum PIC code subtract the 

113



contribution due to the particular quantum particle being pushed (see Section C 

of Chapter III and (57)), the total electric field is not calculated explicitly during 

the simulation.  Therefore, a separate code was derived from the quantum PIC 

code that reread the entire quantum data file and used the same field solvers to 

calculate E(x,t) ,  the electric field as a function of time and space, for the 

entirety of the run.  Another code then performed a two dimensional FFT on 

this output to derive E(k, )  and determine the energy density.  Cross-sections 

of the energy density are then studied for comparison to the theory.  

D. Proper Comparison

In theoretical predictions regarding plasmas, it is most often assumed 

that n Debye
3 >> 1 (or, in one dimension, n Debye >> 1).  However, in a practical 

computational simulation, n Debye
3  may be much lower than its value in the 

plasma one is trying to model.  For proper comparison of theory and 

computation, we should bear in mind the consequences of representing a 

plasma using a smaller number of macroscopic (or finite-size) particles before 

making judgments about the predictions of quantum theory versus that of 

classical theory.  Studies of the consequences of finite-sized particles for the 

fluctuation-dissipation theorem have been made by Langdon. 76 

Since the classical theory of plasmas and plasma codes based in classical 
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mechanics are at our disposal, we wanted to determine what kind of 

predictions would we see given only these tools.  We wish to compare our 

diagnostics of the classical plasma code against the predictions of classical 

plasma theory, so we need to determine the dielectric permittivity of (90).  In a 

one-dimensional classical plasma, the permittivity is calculated 62  using

L(k, ) = 1 − p
2

k2

1

kv − − i
k

∂f (v)

∂v
dv

−∞

∞

∫ (91)

where f (v)  is the velocity distribution function of the plasma, and q  is the 

charge of the particle.  Inserting a Maxwellian distribution for f (v)  in (91) leads 

to 

L(k, ) = 1 +
kD

2

k 2 1− zexp(− z2 2) exp(w2 2)dw
0

z

∫ + iz exp(− z 2 2)
π
2

 

 
 
 

 

 
 
 (92)

where

z ≡
k

m

T
(93)

and 

kD
2 ≡

4πq2n

T
(94)

A plot of (90) using (92), (93), and (94) yields Figure 26.  
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Figure 26.  Energy spectra of the longitudinal electric field in a hot plasma 

assuming classical theory.  The horizontal axis is frequency, and the colors of 

the plots indicate spatial wavenumber, with blue being the highest.  

EL(k, )
2

 is a two-dimensional function, so we describe our convention to 

represent this energy density in one-dimensional plots here.  In Figure 26, the 

energy density is plotted as a function of frequency in a semi-log plot.  The 

colors indicate plots of different wavenumber, red being lowest and blue being 

highest. The red is when k = 20 kD , the magenta when k = 40 kD , the green when 

k = 60 kD , the cyan when k = 80 kD , and the blue when k = 100 kD .  Each plot at a 

constant k  is normalized to 1 at = 0 .  For consistent comparison to the 
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quantum results, these plotting characteristics form the convention used for the 

remainder of the energy density plots in this chapter.  

Figure 26 tells us that, in a purely classical model of a plasma, we would 

expect the energy density of the plasma to decrease with increasing frequency.  

However, with increasing wavenumber, the rate of the decrease as a function 

of frequency would decrease.  These properties lead to a characteristic behavior 

of the normalized energy density of higher wavenumbers always being above 

those of lower wavenumbers.  As the wavenumber approaches infinity, the 

energy density becomes constant as a function of frequency.  

We performed a classical plasma simulation and extracted the energy 

density of the electric field in the same parameter space used for Figure 26.  The 

simulation used a classical plasma PIC code (beps) 77 that led to the code that 

the quantum PIC code was originally based on.  

A plot like that of Figure 26 using data from a run using 128 classical 

particles in a 1024 grid-point space in the classical plasma code is shown in 

Figure 27.  
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Figure 27.   Energy spectra of the longitudinal electric field in a hot plasma using 

a 128-particle plasma simulation that assumes classical theory.  The dashed 

curves are from the classical simulation, while the solid curves are from classical 

theory.  

Figure 27 shows both solid curves for the theory and and dashed for the 

simulation.  At first glance, the noise in the data obscures some of what the 

theory and simulation have in common, and some of the discrepancies seem 

rather large.  We are encountering the consequences of low particle statistics, 

regardless of classical or quantum theory.  Upon further study, Figure 27 does 

show that the classical simulation shows many of the same characteristics of the 
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theory, such as the increasing normalized energy density with increasing 

wavenumber, and the energy density becomes nearly constant with the highest 

wavenumbers.  And we can clearly see, at low k , a resonance at the plasma 

frequency, confirming a fundamental collective effect in plasmas.  (The k = 0  

theory curve based on (90), (92), (93), and (94) was off scale.)  Before making 

further judgment, one should study what happens when the number of 

particles in the plasma simulation is significantly increased.  

Figure 28 shows results from a simulation like that used for Figure 27, 

but with one hundred times as many particles.  The macroscopic plasma 

parameters were the same.  
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Figure 28.  Energy spectra of the longitudinal electric field in a hot plasma using 

a 12,800-particle plasma simulation that assumes classical theory.  The solid lines 

are theory, while the dashed is the simulation.  

With a significant increase in the particle number, we can see that the simulation 

is behaving more like the classical theory.  Except for a portion of the k = 0  case, 

the monotonically increasing energy with wavenumber is preserved, with the 

constant energy density as wavenumber approaches infinity.  However, the 

increased number of particles allows the curves to more closely follow the 

theoretical predictions.  Note that, in the red, k = 20 kD , curve the simulation 

falls below the theory, then at some point it becomes smooth and constant.  

Also present in the k = 0  case, this behavior may indicate a noise floor present 

in this diagnostic of the simulation.  

Further, we were able to produce a classical simulation with almost 

another hundred times as many particles.  These results are shown in Figure 29.  
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Figure 29 .  Energy spectra of the longitudinal electric field in a hot plasma using 

a 1,024,000-particle plasma simulation that assumes classical theory.  Solid lines 

are theory, and dashed lines are from the simulation.  

Note that the characteristics of these plots continue to be preserved, while the 

noise level has decreased after increasing the particle number.  The resonance at 

the plasma frequency at low k  is well resolved.  Also, a significant difference 

between Figure 28 and 29 is that the noise floor is encountered at a higher 

frequency, as can be seen in how the red graph better follows the characteristics 

of the theory before becoming constant.  Further, this floor matches that of the 
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k = 0  case.  

With this study of the consequences of finite particle count in mind, we 

may look upon the 128-particle case shown in Figure 27 in proper perspective.  

Based on the difference in noise floor observed in Figures 28 and 29, we are 

inclined to extrapolate that the noise floor should have a larger effect in the 128-

particle case.  Also, we would expect the noise level on the “signal” we wish to 

deduce from Figure 27 to be significantly higher than that seen in Figure 28 and 

29.  From this study, it is evident that there are characteristics of this diagnostic 

due solely to low particle statistics.  To the extent of the commonality of the 

studies, these results are consistent with the study by Langdon. 76  These 

classical simulations are using PIC (or finite size) particles.  To reproduce the 

theoretical curves, we would need to both increase the number of particles and 

decrease the particle (cell) size compared to Debye.  (An alternative approach 

might be to reinterpret the theoretical results by incorporating into (91) what 

we would expect due to the shape function of these PIC particles.)  These 

phenomena should be kept in mind before making judgments about the results 

of other simulations using similar particle numbers.  

E.  Quantum Theory and Simulation

Next, we wish to consider predictions that incorporate quantum 
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mechanics.  The theories presented by Opher and Opher assumed three-

dimensional classical ( deBroglie<< Debye) particles interacting with a quantum-

mechanically modeled electromagnetic field.  This quantum PIC code is one 

dimensional and assumes a classical electrostatic field.  Therefore, for a proper 

comparison, a new set of theoretical predictions must be made that are relevant 

to this experiment.  

(90) is, in fact, an approximation. 68,69  It is based on taking the limit as 

h → 0  of 

  

1

8π
EL (k, )

2
=

h
exp(h T) −1

Im L

L

2 (95)

Therefore, our prediction of the plasma model incorporating quantum theory 

uses (95) without assuming that h → 0  while using the same dielectric 

permittivity described by (92), (93), and (94).  We base this approach on the 

following.  In Opher’s and Opher’s theory, one of their first proposals is not to 

assume that h → 0 .  Then, they assume a calculation of a quantum-mechanical 

electromagnetic field in their calculation of the dielectric permittivity.  Since the 

field in our simulation is classical, we, for the purposes of this comparison, 

assume a dielectric permittivity as described by (91).  We also wish to assume a 

Maxwellian velocity distribution for the plasma of quantum particles so that we 

can directly compare against the classical plasma result.  We should note that, 

although we have techniques to handle antisymmetric wavefunctions in 
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principle, the computational requirements of such a procedure for 128 particles 

make the task impractical.  Thus, we are not incorporating electron degeneracy 

effects into this model.  

Using this model of the plasma possessing the same macroscopic plasma 

parameters used for Figure 26, we are able to compare the quantum theoretical 

prediction with the classical theoretical prediction.  Also, in this case, the mean 

de Broglie wavelength (specifically, the de Broglie wavelength for an electron 

moving at the thermal velocity) was approximately twice that of the Debye 

length.  These predictions are compared in Figure 30.  

Figure 30.   Energy spectra of the longitudinal electric field in a hot plasma using 

quantum theory and classical theory.  The solid curves is from the quantum 
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prediction, while the dashed ones are due to the classical prediction.  

The monotonically increasing normalized energy density with increasing 

wavenumber is present in both the quantum and classical theory.  But the key 

difference seen in the quantum theory is that, at the same wavenumber and 

frequency, the normalized energy density is below that of the classical theory.  

This behavior can be seen in the red, k = 20 kD , curve.  In fact, we can see that 

the discrepancy between the classical prediction and quantum prediction 

becomes more pronounced as wavenumber increases.  This discrepancy is a 

key characteristic that we wish to see in results from the quantum simulation.  

For comparison to the quantum simulation, we created a plasma in the 

quantum simulation possessing the macroscopic plasma parameters used for 

the preceding figures in this chapter.  Frames of a run using the quantum PIC 

code to simulate 128 particles in a 1016 grid-point space are shown in Figure 31.  
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Figure 31.  Three frames from the evolution of a set of Gaussians representing a 

hot plasma.  

We should reiterate that an important characteristic of this electron plasma is 

that the mean de Broglie wavelength was approximately twice that of the 

Debye length.  In this regime, it becomes plausible that plasma effects compete 

with those of quantum mechanics.  This ratio fixes an expression relating well-

known plasma parameters:  

T = h p
Debye

deBroglie

 

 
  

 

 
  (96)

where the momentum of an electron moving at the thermal velocity is used for 

126



the de Broglie wavelength.  Assuming the above length ratio and a density of 

1027 cm−3  gives a temperature of 4.2 keV , or about 4.8 × 107 K .  According to the 

literature 62, these parameters are consistent with the conditions of a stellar 

interior.  

This simulation took approximately two weeks to complete on a cluster 

16 G4/400’s.  Plots of the simulation’s electrostatic energy density are shown in 

Figures 32 and 33.  
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Figure 32.  Energy spectra of the longitudinal electric field in a hot plasma, 

shown in Figure 31, while including quantum-mechanical effects.  The 

horizontal axis is frequency, and the color of the plot indicate spatial 

wavenumber, with blue being the highest.  Results from the 128-particle 

quantum simulation are shown in dashed curves, while the quantum theoretical 

prediction (seen in Figure 30) is shown in solid curves.  
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Figure 33.  A comparison against a classical simulation of the energy spectra of 

the longitudinal electric field in a hot plasma, shown in Figure 31, while 
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accounting for quantum-mechanical effects.  The horizontal axis is frequency, 

and the color of the plot indicate spatial wavenumber, with blue being the 

highest.  Results from the 128-particle quantum simulation are shown in solid 

curves, while results from the 1,024,000-particle classical simulation is shown in 

dashed curves.  The plots were split into two to make the curves easier to 

distinguish.  

The rise in the plateau at high frequency as a function of wavenumber indicate 

the non-propagating quasi-modes.  As in the earlier results, the quantum 

simulation shows increasing normalized energy density with increasing 

wavenumber, as we would expect from the quantum theory shown in Figure 

30.  Figure 32 also shows some of the effects visible in Figures 27 and 28 that are 

characteristic of low particle number, such as how the computational results dip 

below the theoretical results then flatten.  

In Figure 33, the quantum results are shown in solid curves, while the 

results from the 1,024,000-particle classical plasma simulation are shown in 

dashed.  We show these results to compare the consequences of using quantum 

mechanics as opposed to classical mechanics.  It was fortunate that this 128-

particle quantum simulation possessed a low enough noise level for 

comparison.  

By comparing the normalized energy density from the two simulations 

at the same wavenumber, we can see a distinctive and consistent discrepancy 

between the quantum prediction and the classical prediction.  For example, in 

the highest wavenumber (blue) plots, the classical simulation shows an almost 
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constant energy density as a function of frequency.  However, the quantum 

simulation shows an energy density that clearly decreases and stays below its 

value at zero frequency.  Based on the study of low particle statistics made in 

the last section, it should be reasonable to believe that the decrease in energy 

density with frequency is arrested by a noise floor similar to that observed in 

Figures 27, 28, and 29.  The character of the noise floor can be seen in all of the 

plots of the quantum data.  

However, even with the limitations due to low particle number, the 

normalized energy density from the quantum simulation remains measurably 

and consistently below that of the classical simulation at the same wavenumber.  

This discrepancy is much like what we observed from the theoretical 

predictions shown in Figure 30.  This observation lends credence to the 

proposal that quantum effects can have a measurable effect in plasmas which 

were formerly treated as “classical plasmas”.  

F. Conclusion

The results of this analysis are very promising.  Not only do the plots in 

Figure 33 contain many of the qualitative characteristics predicted by a theory 

that includes certain quantum effects, but we were able to show a measurable 

difference in the predictions of the quantum code compared to that of a code 
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based solely on classical mechanics.  The similarities between the quantum PIC 

code’s output and the quantum theory, embodied in Figures 30, 32, and 33, 

indicate the code is duplicating at least some of the physics involved and has 

significant bearing on the question at hand.  With a more rigorous quantitative 

analysis using plasma and quantum theory as it applies to the circumstances 

modeled in the code, these simulations should carry weight in confirming the 

correctness of proposals incorporating quantum mechanics into plasma models.  

Further study is needed, not only on the quasi-modes seen in this 

chapter, but on nonadiabatic modes (including those close to the plasma 

frequency) of the plasma.  In fact, a portion of the data from the same quantum 

PIC simulation shown earlier reveals an intriguing effect.  In a classical plasma, 

a characteristic effect is a resonance at the plasma frequency, which can be 

easily seen in the black curves of Figures 27, 28, and 29.  Data from the 

quantum simulation at low k  is shown in Figure 34.  
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Figure 34.  Energy spectra of the longitudinal electric field in a hot plasma at low 

k  while accounting for quantum-mechanical effects.  The arrows point out rises 

in the energy density, some of which could be similar in origin to the peak at 

the plasma frequency seen in the classical results.  

If this were a classical plasma, a sharp rise at or near the plasma frequency 

would be expected in the plots with the lowest values of k .  However, in its 

place, we see a small rise in the quantum data.  Since the de Broglie wavelength 

in this simulation was greater than the Debye length, perhaps quantum effects 

have largely smothered the plasma effects.  However, these simulations 

indicate that well-defined collective plasma modes of quantum particles (as 
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opposed to ballistic modes, a likely cause of the behavior seen in Figures 32 and 

33) are still present.  The density of the quantum particles was low (average 

quantum particle density times the Debye length was less than one) by 

standards of a normal plasma, so some plasma effects could be obscured by the 

low particle statistics.  Clearly, these issues are deserving of future work.  

The work shown in this chapter logically leads to further steps.  Methods 

to create closer comparisons of theory and simulation are needed.  Because of 

the well-known characteristics of the classical code, it would be wise to 

experiment with techniques such as smoothing or averaging (e.g., over 

wavenumber and/or frequency) of data from the classical code.  In addition, a 

study of the origin of the noise floor, seen in plots from both the classical and 

quantum codes, would be appropriate.  This study applied to the classical 

simulations could lead to a prediction of the noise floor relevant for 

interpretation of the quantum data.  Work by Langdon 76, suggests that similar 

types of noise may be reduced by decreasing the time step or increasing the 

duration of the simulation.  Although it would obviously require more CPU 

time, it is otherwise a simple experiment to try.  With these considerations, 

more direct comparisons between theory and simulation would become easier 

to perform.  

Further, approaches, alternative to that of (88), to estimating the 

electrostatic energy density can be considered.  One may derive the electric field 
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using the permittivity as a dielectric response function of the density 

fluctuations in the plasma.  This idea is inspired in a paper by Dawson. 78   For 

example, a non-interacting model of the plasma could be interpreted as an 

external charge density as seen in Ichimaru. 62   Some work on predictions using 

the density fluctuations was performed, but the model, so far, did not provide a 

comparison as close as the one presented here.  Further work would be 

appropriate.  

Regarding the low particle statistics, quantum simulations of higher 

particle number can be performed as well, with a corresponding increase in 

computation time, of course.  Some of the recommendations for more efficient 

quantum simulation, presented in Chapter VII, can be performed for such 

simulations.  Together, the proposals described above paragraphs would take, 

at minimum, six months of further work.  

Further in the future, it may be possible to use this code to predict 

reaction rates in a plasma.  Estimates of nuclear reaction rates in some 

extraterrestrial plasmas are higher than expectations inferred from Earth-based 

laboratory experiments.  In a plasma, ions are not “naked”, but are surrounded 

by electrons that form a shielding cloud around them.  The polarization clouds 

partially screen their charges resulting in a lower Coulomb barrier between 

them, thus providing an enhanced tunneling probability.  In addition, collisions 

are occurring, not just between particles and fixed shielding clouds, but 
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between particles and fluctuating shielding clouds.  Consequently, the potential 

barrier, and therefore the penetration rate, fluctuates.  These phenomena 

should be taken into account.  For these purposes it may be desirable to create 

a two-dimensional version of the code and include ions.  
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VII. Future Work 

A. The Future

The quantum PIC code has a great deal of potential utility, demonstrated 

by the examples shown in this dissertation.  In addition, it is possible to evolve 

the code into a new tool for the future.  This code and the experience 

accumulated in building it may serve as a guide for codes not yet written that 

explore new possibilities.  It is the hope of this author that this work is 

important, not simply for itself in isolation, but for the future development to 

which it leads.  This chapter is meant to serve as a collection of suggestions for 

such future work.  
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B. One Dimension 

Leveraging off of Chapter V, further analyses of the one-dimensional 

atom may be pursued.  The two-electron studies of higher energy eigenstates 

may be extracted from further runs of the type described in that chapter, and 

superposition descriptions of those eigenstates in terms of the one-electron 

eigenstates could be determined.  Also, more electrons could be added to 

analyze states of higher Hilbert spaces.  The calculations involved to construct 

and analyze an antisymmetrized state of these higher dimensions will be more 

involved and are likely to grow in computational cost exponentially as a 

function of quantum particle number.  Visualization of the three-electron case 

could utilize volumetric raytracing techniques developed for other visualization 

software  79.  This visualization could then be used to slice the higher-

dimensional states that represent more electrons.  Practical considerations, such 

as storage space, may limit these studies to roughly six electrons.  

It may be possible to apply techniques developed for a pair of 

antisymmetrized electrons to construct simplified models of multielectron 

states. Usually, the behavior of electrons with probability densities that are far 

apart are affected little by their antisymmetric properties, but those that 

approach each other generally are affected.  Perhaps an approximation of the 

fully antisymmetrized N-electron state could be constructed by 
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antisymmetrizing only each closest pair of electrons (determined by 

considering properties of their individual probability densities, such as their 

overlap) while calculating a simplified version for those that are far apart.  This 

technique may serve useful for the analysis or for the simulation itself, e.g., if 

calculations based on the N-electron wavefunction are desired to influence the 

simulation directly.  The infinite square well, the simple harmonic oscillator, and 

the one-dimensional atom may serve as testing environments for such 

experiments with antisymmetrized states.  

Using Chapter VI as a starting point, it is possible to pursue further 

comparisons to the proposal about quantum effects in a plasma.  Additional 

tests with other plasma parameter regimes may serve to provide useful 

comparisons with the theory.  In addition, one may add nuclei to the quantum 

PIC code and use the simulation to estimate nuclear reaction rates by observing 

how these nuclei behave.  Because of the considerably greater mass of the 

nuclei, their de Broglie wavelengths will be much smaller, so it is likely to be 

sufficient to model these nuclei as classical particles, not unlike the original 

plasma code.  This hybrid plasma PIC/quantum PIC code could contain code 

that models a number of classically modeled positively charged protons or 

deuterons interacting with an equal number of quantum-mechanically modeled 

negatively charged electrons.  Since there would be so few nuclei by 

comparison to the number of virtual classical particles, the additional 
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computation cost should be immeasurable, and the additional plasma PIC 

pieces should weave easily with the existing quantum PIC code.  This author 

recommends beginning with existing quantum PIC code, then adding the 

relevant pieces to model the nuclei.  The computational costs would require 

many days on a parallel computers with a few nodes and hours on a parallel 

computer with hundreds of nodes.  

Additional tests of the semiclassical techniques used in the quantum PIC 

code can be explored, such as more accurate modeling of finite quantum 

barriers and wells.  In the case of the rectangular barrier, rather than 

attempting to smooth the barrier edges, one could borrow the technique used 

for the boundary conditions of the infinite square well.  In the external potential 

routine, the correct, stair-stepped potential may be added to the potential array, 

while nothing is added to the force array.  Then, in the particle pusher, if a 

virtual classical particle is about to cross a barrier edge, a test on its momentum 

is made.  Those virtual classical particles that have sufficient momenta to 

“climb” the potential may pass and suffer a momentum loss, while those that 

do not have the required momentum are bounced.  Those virtual classical 

particles that begin inside the barrier and fall off are given a momentum kick 

upon exiting the barrier.  Note that these momentum adjustments would occur 

sharply at the barrier edges, much like the infinite square well boundary 

conditions.  In this author’s opinion, this method should be sufficient to allow 
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for accurate modeling of quantum tunneling phenomena.  Finite square wells 

would be modeled similarly, with the momentum behavior switched.  This 

proposed method was conceived and considered while investigating the 

rectangular quantum barrier quantitatively, but was not attempted because its 

applicability seemed limited to that problem, and other problems in the course 

of this research had higher priority.  

Another type of quantum system that can be straightforwardly 

addressed is those involving the Morse potential.  It would be a matter of 

entering its form into the external potential routine and setting up initial 

conditions of interest.  Evidence of other work 11,13,58 using this potential 

indicate it may be of significant interest in quantum and molecular chemistry.  

What is convenient about addressing problems like these with this code 

is that these one-particle runs take only on the order of hours on modern 

personal computing hardware.  This would allow progress to be made using 

limited computing resources.  

C. Higher Dimensions

Like has been done in the past with plasma codes, this quantum PIC 

code may be extrapolated to higher dimensions.  Study of the derivation, 

shown in Chapter II, was made for two- and three-dimensional cases.  For a 
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great deal of the derivation, the replacement of momentum and space 

coordinates with their vector counterparts is straightforward (e.g., add vector 

signs and convert many multiplications to dot-products).  For example, (55) 

would become:

  

x f (t + ∆t) = exp(
ix f • pcl f

h
)exp( −

ix cl N
• pcl f

h
)

exp iScl h( )
h3 det(M)

x0 ( t) (∆x∆p)3

x0

∑
p0

∑
(97)

Likewise, the classical path iterative method and the definitions of quantities 

such as the Lagrangian and the action are easily extrapolated.  With these 

extrapolations, the addition of electromagnetism fits better into this context 

(including the use of the canonical momentum 
  
r 
p −

e

c

r 
A ).  Also, with magnetism, 

the concept of spin can be incorporated, perhaps using a spinor representation 

to describe the evolution the wavefunction.  Spin terms of the Hamiltonian are 

easily included in the effective potential.  These spinor wavefunctions may 

require the modeling of a pair of virtual classical particles for every one that did 

not consider spin.  

A point of greater potential difficulty is evaluating the determinant in 

this case.  Consider the description given in Sections E of the semiclassical 

matrix and F of its determinant of Chapter II.  While the matrix became 

tridiagonal in the one-dimensional case, it has been determined that the 
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corresponding determinant in the two- and three-dimensional cases behave as 

a product of determinants of triagonal matrices (one for each dimension) with 

the addition of terms, proportional to cross derivatives (e.g., 
∂ 2V

∂x∂y
) of the 

effective potential, that link matrix elements describing terms from different 

dimensions.  The two-dimensional case was investigated sufficiently to 

determine that it should be possible to compute the determinant of the two-

dimensional semiclassical matrix using a parallel pair of iterative methods.  

These iteration schemes are equivalent to a pair of finite difference equations 

possessing cross terms that link these equations together multiplied by 

coefficients proportional to the cross derivatives of the effective potential.  

Based on the analysis in two-dimensions, it seems reasonable to expect that a 

similar form would occur in three-dimensions.  

However, a question should be considered: how important are these 

cross terms?  Perhaps it is sufficient to follow the evolution of these finite 

difference equations, one per dimension, and ignore the cross terms.  It has 

been observed in the one-dimensional quantum PIC code that the determinant 

evaluations result in multipliers close to one.  Since these cross terms would be 

a correction to an already small effect, it may be sufficient to evaluate the 

determinant by considering the multidimensional semiclassical matrix 

independently by dimension.  
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Assuming the details of the semiclassical methods used for a 

multidimensional quantum PIC code can be resolved, such a code could 

provide great utility.  A two-dimensional version could simulate the physical 

situations, named “quantum billiards”, in the article by Heller and Tomsovic 13 

instead with multiple quantum particles.  The quantum corrals built with 

scanning tunneling microscopes could be modeled using any number of 

electrons.  Such a code would also have great relevance to any model of 

phenomenon on silicon substrates, such as quantum dots and circuitry.  The 

problem could be defined as electrons exploring a space with potentials 

determined by the circuit design.  Considering the foreseeable end of Moore’s 

Law and its consequences to computational hardware in the information age, 

quantum effects on the design of smaller and smaller transistors and other gate 

logic are likely to become significant.  (Some of these questions may be 

answerable using the current code.)  A two-dimensional quantum PIC code 

could help model and predict the behavior of proposed designs, perhaps 

extending the lifetime of the processor improvement rate the computer 

industry has so far enjoyed.  

A three-dimensional quantum PIC code could have applicability to even 

more difficult quantum problems.  In line with the above problem, three-

dimensional potentials could be experimented with, adding a new dimension in 

circuit design, or provide understanding of other phenomenon such as electron 
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gases in metals.  The simplest problem of a more fundamental nature would be 

multielectron atoms, duplicating shell structure and other phenomenon we 

know to occur in atoms.  Early versions will probably model the nucleus 

classically, perhaps extending it to a quantum model later.  With the atomic 

simulations established, then multiple atoms can be combined to form 

molecules, allowing us to analyze their behavior, including their internal 

oscillations.  It may be sufficient to model such atoms with a few quantum 

electrons each.  These electrons provide bonding while surrounding noble 

element based cores.  Ultimately, hundreds of atoms could be assembled to 

form complex molecules to answer questions about complicated quantum 

problems such as protein structure and how they fold.  

Combing electromagnetism with the three-dimensional quantum PIC 

code would add a wide space of problems.  The simplest would be absorption 

and emission of light by single atoms.  It may be sufficient to provide a classical 

model of electromagnetism for this purpose, much like how current 

electromagnetic plasma PIC codes operate.  Similar phenomena can be 

modeled for molecules.  A more radical application would be 

photodisassociation of atoms from molecules.  Then, considering how such 

processes can absorb or emit significant amounts of light, chemical reactions 

could be modeled.  Eventually, more accurate models may wish to extrapolate 

the semiclassical methods to relativistic 80 paths, since relativistic effects have 
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been observed in atoms.  

In any case, this direction of exploration of quantum modeling methods 

is vast.  

D. Evolution of the Implementation

Since it would be desirable to reduce the computation time necessary for 

simulations using the current code or future similar codes, we explore 

alternative computational methods to implement this type of simulation.  

A modification to the current parallelization scheme could be attempted 

with the current quantum PIC code.  Currently, each quantum particle is 

considered one at a time.  Each quantum particle’s virtual classical paths are 

evaluated, then that quantum wavefunction is reconstructed, and then the code 

moves on to the next quantum particle.  It is possible to instead evaluate all the 

virtual classical particles of all the quantum particles at once.  This scheme 

would require adding a quantum particle index to the virtual particle array and 

potential and field arrays, increasing their allocation size significantly, and 

appropriate adjustments to the code for virtual classical particles accessing 

information relevant to their corresponding quantum particles must be made.  

While the disadvantage is increased memory requirements, the advantage 

would be that the code would more efficiently utilize its particle manager 
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routine on a parallel computer.  Since there would be more virtual classical 

particle information passed between processors per node, the message sizes 

would be larger, pushing the communications bandwidth usage to a more 

efficient regime.  The effect would be more efficient parallelism during the 

particle push/particle manager loop, which is typically the most time-

consuming portion of the code.  (Depending on the problem and the number of 

processors, the distribution of CPU time is: 50-80% on the particle push/particle 

manager loop, 15-40% on the wavefunction reconstruction, and <10% on the 

field solve.)  This scheme would show the greatest improvement on parallel 

systems with large (>100) numbers of nodes (which typically has ample 

amounts of memory).  

Some of the routines can be accelerated using specialized hardware.  As 

the plasma code has been vectorized in years past for vector processors such as 

those by Cray, the quantum PIC code can be vectorized for current vector 

hardware, such as the AltiVec instruction unit in the Motorola MPC74x0 

PowerPC Microprocessor (a.k.a., the “G4” series).  The particle pusher, since it 

is largely unchanged from the plasma code, has clear methods of vectorization 

just like how the plasma code’s pusher was vectorized.  

In addition, the wavefunction reconstruction routine can be vectorized.  

Consider the description in Section C of Chapter III, in particular, (61), (62), and 

Listing 5.  After rearranging the arrays (such as wtemp) which hold the 
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accumulated virtual classical particle contributions so that space is the least 

significant index and it is aligned in memory on a vector boundary, the virtual 

classical particle contribution deposit may be rewritten in the following way.  

Let us assume the vectors contain n floating-point elements.  (We provide this 

discussion with the AltiVec instruction set in mind, which has properties distinct 

from other architectures, such as those of Cray.)  Promote ctemp and cincr in 

Listing 5 to vector complex, but alter their initialization.  Load the elements 

of ctemp sequentially with {1, m , m 2 , m3 , ... , m n−1 } and multiply all the 

elements of ctemp by y0 .  In the meantime, load all the elements of cincr with 

m n .  Then loop over the number of complex vectors that are in wtemp adding 

ctemp to the first vector, then multiplying cincr by ctemp, and continue the 

loop on the rest of wtemp.  This completes a virtual classical particle deposit 

evaluation.  The sum across processors at the end of this routine is easily 

vectorized as well.  Of course, these are complex calculations, so such complex 

computations will have to be built in languages without complex intrinsics.  

Assuming the number of grid points in each processor is large compared to n (4 

in the case of AltiVec), this vectorized code should provide a speed-up factor of 

almost n for the wavefunction reconstruction routine.  A similar calculation for 

two- and three-dimensional quantum PIC codes should speed up at least as well 

as in the one-dimensional code.  

In many simulations using the quantum PIC code shown in this 
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dissertation, each quantum wavefunction is somewhat localized in space.  

Another optimization method may be used that takes advantage of this 

observation.  A virtual classical particle’s contribution is proportional to the 

wavefunction at that particle’s starting position (see Sections A and C of 

Chapter III, (55), and (59)).  If the wavefunction magnitude at that position is 

small, then the computations on paths that start there are not as significant to 

the answer as others.  It may be possible to recognize portions of the 

wavefunctions that are small (prioritized by (x)
2
, for example) and reduce the 

number of virtual classical particles that begin there, while proportionally 

increasing their contribution.  This reduction in number and increase in 

contribution can be performed in stages based on (x)
2
.  The momentum 

spread from that point could be reduced, made more sparse, or both.  This 

technique would selectively reduce the sampling of phase space and reduce the 

computational cost to push one quantum particle.  At best, this approach could 

reduce the number of needed virtual classical particles per quantum particle to 

be proportional to the volume of the space, rather than the phase space, of the 

simulation.  One must be careful not to reduce too much, however, or else the 

delicate balance of cancellation due to phase could be disturbed.  The author 

recommends one-particle tests like those shown in Chapter IV be performed to 

validate the code.  

Assuming this technique is successfully implemented, the code would 
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then generate numerous classical paths in concentrated locations where the 

wavefunction probability density was most significant.  In a PIC code on a 

parallel system, these concentrations lead to load imbalances: certain processors 

would be assigned more work than others.  This imbalance could force other 

processors to wait for the overloaded processors to catch up.  The solution 

would be to implement the alternative parallelization scheme described earlier 

in this section.  Since the quantum particles, if they are localized, are most likely 

to distribute their localizations across many cells, then the virtual classical 

particle concentrations are likely to be well distributed among processors, so 

the load should become well-balanced once again.  Such techniques can be 

combined with ones established for plasma PIC codes. 55, 81, 82  

E. Evolution of the Methods

Significant modifications to the semiclassical methods and their 

application could be made, for the purposes of greater computational efficiency, 

greater physical accuracy, or exploring new types of simulations.  

There exist ways to reduce the cost of the numerical methods to push the 

virtual classical particles.  Since the fields are held constant for many classical 

time steps, a multi-step method could be implemented, with the caveat of 

guaranteeing that the method can account for the partitioning of the fields 
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according to PIC methods.  Another approach could be attempted to use few 

classical paths.  Contributions of paths “in between” the calculated paths could 

be interpolated.  Also, since most paths start out very close to each other, the 

number of calculated paths could start with only a few, then accumulate, 

generated from the interpolated contributions as the classical time steps exhaust 

the quantum time step.  

Other approaches exist to reduce the number of virtual classical particles 

per quantum particle.  Much of the virtual classical particle contributions cancel 

each other, typically in the range of high momentum.  By looking at the grid 

points of the wavefunction near the starting point of the path, an estimate of 

the “primary” momentum of the wavefunction could be made.  Virtual classical 

particles could be launched from that starting point in a narrower “momentum 

cone” around that primary momentum.  Since action, for high momentum, 

becomes dominated by the kinetic term of the Lagrangian, contributions 

beyond that momentum cone could be approximated with an analytical 

solution.  Such an analytical solution would have similarities to the Fresnel 

integrals.  Because of the form of the kernel of such integrals, this method may 

become analytically simpler in the two-dimensional case (or in two-dimensional 

slices of the three-dimensional case) than in the one-dimensional case, as has 

been seen in other studies involving such integrals 83.  

Another possibility is the use of wavelet theory. 84  Wavelets are a kind 
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of basis set that spans a phase space differently than a pure space or Fourier 

space representation.  Wavelets have been used to identify frequency ranges of 

signals in a limited time interval.  Since the phase space explored here is position 

space and its Fourier space, momentum, wavelets have the potential prescribe 

an efficient and even way of sampling phase space in this problem.  

Another potentially viable approach involved interpreting the 

discretization of the wavefunction as a representation on grid-point functions, 

represented with a basis g  (as opposed to the x  basis).  With this formalism, 

(55) is replaced with the following:

  

g f (t + ∆t) = g(g f − xclN )
exp iScl h( )
h det(M)

˜ g (p0 ) g0 (t) ∆g∆p

g0

∑
p0

∑ (98)

where g(x) ≡ x g  is the grid-point function and ˜ g (p) ≡ p g  is the grid-point 

function in momentum space.  Conceptually, the wavefunction can be thought 

of as a superposition of these grid-point functions.  An individual grid-point 

function is highly localized in space, implying, by the Heisenberg uncertainty 

principle, a wide distribution in momenta.  This explosion of momenta can be 

thought to be expressed in the classical paths emanating from the grid-point.  

These “momenta explosions” is another way of looking at path integrals.  The 

superposition of the resulting explosions of paths gives the new wavefunction.  

This grid-point approach was extensively studied early on in the code 

development (reflected in Appendix A).  This approach has the conceptual ease 
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of being a highly localized virtual classical particle deposit.  The best behaved 

grid-point function found was a Gaussian with a standard deviation of the grid 

spacing, but all attempts thus far resulted in the high-momentum attenuation 

discussed in Section B of Chapter IV.  Numerous techniques were developed to 

enhance the momentum distribution to counteract the attenuation, but those 

techniques were eventually abandoned in this work.  However, some 

applications may find that attenuation acceptable because it has a faster virtual 

classical particle deposit.  This choice is a tradeoff between computation time 

and accuracy, and the solution presented in Chapter II and III chooses accuracy.  

An approach using grid-point functions, perhaps in combination with wavelet 

methods, may yet be found that provides both high accuracy and high 

efficiency.  

The one-particle Hamiltonian used in Chapter II contained an effective 

potential that was defined in Chapter III to assume a mean-field approximation 

for the other quantum particles.  Higher-order corrections to the effective 

potential are possible.  For the duration of the quantum push, the potential is 

assumed to be static, which in turn assumes all other quantum particles are 

static.  One could reconstruct the wavefunction, then the fields, at every classical 

time step, essentially making ∆t =∂ t .  A possible correction, without such a 

drastic increase in CPU time, involves a way to estimate the evolution of the 

electrostatic potential due to other quantum particles for the duration of the 
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quantum time step.  For the sake of clarity of this presentation, let us assume 

there is only one other quantum particle.  We wish to study the evolution of 

1  of a two particle state 1 ⊗ 2 .  

  
Ψ(t) = exp(−

i ˆ H t

h
) 1 ⊗ 2 (99)

where the Hamiltonian ˆ H  is of the form 

ˆ H = ˆ H 1 + ˆ H 12 + ˆ H 2 (100)

where ˆ H 1  and ˆ H 2  are the part of the Hamiltonian containing operators that act 

only on particle 1  and 2 , respectively, and ˆ H 12  describes the terms that 

have operators that act on both particles.  Hitting 
  

2 exp(
i ˆ H 2t

h
)  on (99) gives  

  
2 exp(

i ˆ H 2t

h
) Ψ(t) = 2 exp(

i ˆ H 2t

h
)exp( −

i ˆ H 12t

h
)exp( −

i ˆ H 2t

h
) 2

 

 
  

 

 
  exp(−

i ˆ H 1t

h
) 1

(101)

Let us assume terms of order 
  

ˆ H 12t

h

 

 
  

 

 
  

2

 and higher are small.  Therefore 

  

2 exp(
i ˆ H 2t

h
)exp( −

i ˆ H 12t

h
)exp(−

i ˆ H 2t

h
) 2 ≅

2 exp(
i ˆ H 2t
h

) 1 − i ˆ H 12t
h

 

 
  

 

 
  exp(− i ˆ H 2t

h
) 2

(102)

Using 
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exp( ˆ B ) ˆ A exp(− ˆ B ) = ˆ A + ˆ B , ˆ A [ ] +

1

2
ˆ B , ˆ B , ˆ A [ ][ ] +

1

3!
ˆ B , ˆ B , ˆ B , ˆ A [ ][ ][ ] +L (103)

on (102) yields 

  

2 exp(
i ˆ H 2t
h

)exp( − i ˆ H 12t
h

)exp( − i ˆ H 2t
h

) 2 ≅ 1− it
h

(

2
ˆ H 12 2 + it

h 2
ˆ H 2, ˆ H 12[ ] 2 + 1

2
it
h

 
  

 
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2

2
ˆ H 2 , ˆ H 2, ˆ H 12[ ][ ] 2 +L)

(104)

Let us assume ˆ H i  and ˆ H 12  are of the form

ˆ H i =
ˆ p i

2

2mi

+ Vi( ˆ x i ) (105)

ˆ H 12 = V12( ˆ x 1, ˆ x 2 ) (106)

Then, by inserting  1 = dx2 x2 x2∫ , 

2
ˆ H 12 2 = 2 *( x2 )V12( ˆ x 1, x2 ) 2 (x2 ) dx2∫ , (107)

which we recognize as the mean-field approximation.  Because 

ˆ x 1, ˆ x 2[ ] = ˆ x 1, ˆ p 2[ ] = 0 , 

ˆ H 2,
ˆ H 12[ ] =

1

2m2

ˆ p 2
2,V12( ˆ x 1, ˆ x 2 )[ ] (108)

Strategically inserting 1 = dx2 x2 x2∫  into 2
ˆ H 2 , ˆ H 12[ ] 2  yields 
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2
ˆ H 2, ˆ H 12[ ] 2 =

1
2m2

2
ˆ p 2 x2 x2

ˆ p 2V12( ˆ x 1, ˆ x 2 ) 2 − 2 V12( ˆ x 1, ˆ x 2 ) ˆ p 2 x2 x2
ˆ p 2 2( ) dx2∫

(109)

Using 
  
x2

ˆ p 2 =
h
i

∂
∂x2

x2 , 

  

2
ˆ H 2,

ˆ H 12[ ] 2 =

h2

2m2

∂ 2 *( x2 )

∂x2

∂
∂x2

V12 ( ˆ x 1, x2 ) 2 (x2)( )

− ∂
∂x2

2 *( x2 )V12(ˆ x 1,x2 )( ) ∂ 2(x2 )

∂x2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

dx2∫
(110)

Simplifying the derivatives, canceling terms, and factoring gives 

  
2

ˆ H 2 , ˆ H 12[ ] 2 =
h2

2m2

∂V12( ˆ x 1, x2 )

∂x2

∂ 2 *( x2 )

∂x2
2 (x2 ) − 2 *(x2 )

∂ 2(x2 )

∂x2

 

 
  

 

 
  dx2∫

(111)

We recognize that the derivative terms on 2  is proportional to the probability 

current and the derivative of V12  is a dipole potential.  Combining (111), (107), 

and (104) with (101) gives 

  
2 exp(

i ˆ H 2t

h
) Ψ(t) = exp(−

i ˆ H 1eff
t

h
) 1 (112)

where 
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ˆ H 1eff =
ˆ p 1

2

2m
+ V1eff ( ˆ x 1 ) (113)

is the effective Hamiltonian for particle 1 and 

  

V1eff
(ˆ x 1) = V1(ˆ x 1 ) + 2 *( x2 )V12(ˆ x 1,x2 ) 2(x2 ) dx2∫

+ ith
2m2

∂V12 ( ˆ x 1, x2 )

∂x2

∂ 2 *( x2 )

∂x2

2(x2 ) − 2 *( x2 )
∂ 2 (x2 )

∂x2

 

 
  

 

 
  dx2∫ +L

(114)

is the effective potential for particle 1.  In the case of the potentials describing 

electrostatics, this method evaluates the electric field and potential due to the 

charge density and dipole components of the other wavefunction.  By 

extending the derivation to higher terms in (104), quadrupole and higher-order 

components can be included, if desired.  Because the terms beyond the original 

mean-field term are time-dependent terms, this method can be thought of as a 

predictor-type correction to the mean-field approximation.  

An avenue of investigation worth pursuing concerns the momentum 

Jacobian 
∂pcl f

∂p0

 

 
  

 

 
   that was assumed to be one in producing (55) from (51).  While 

it is most likely that virtual classical particle contributions of neighboring 

momenta make the cancellation due to phase as smooth as we have seen, it is 

possible that a correct evaluation of this momentum Jacobian will enable 

methods that sample momentum space with lesser density possible.  In the 

course of this work, the properties of this multiplier were not explored.  It may 
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also provide ways of estimating the contributions of virtual classical particles of 

momenta in between virtual classical particles that are evaluated.  

In addition, the questions concerning boundary conditions raised in 

Section D of Chapter II could be addressed.  The bounce point of the virtual 

classical particles being one-half grid beyond the wall is a question that may be 

answered by a more detailed examination of the semiclassical methods and 

how they incorporate boundary conditions.  For now, the quantum PIC code 

functions, but, eventually, this issue may be worth investigating.  

If the memory limitations could be overcome, this application of the 

semiclassical method could be used to evaluate systems with large Hilbert 

spaces (e.g., improvements on (54)), as is the case with wavefunctions of 

multiple particles.  The network of paths traced by the virtual classical particles 

could be used to link representations of multiparticle quantum wavefunctions, 

just as they have been here with single particle wavefunctions.  In this author’s 

opinion, applying this method of evolving such a wavefunction is viable.  The 

particle pusher would be largely unchanged, while the wavefunction 

reconstruction routine would evaluate slices (in x1 , x2 , x3 , etc.) of the much 

larger dataset representing the initial and final multiparticle wavefunctions.  If 

such a code could be constructed, it could simulate the most challenging 

problems in quantum physics involving quantum correlations between 

particles.  Such a code could model EPR pairs, quantum teleportation, and many 
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other aspects of quantum computing.  

F. Conclusion

In conclusion, we have seen the techniques, theoretical and 

computational, used to construct, test, and operate a quantum PIC code based 

on semiclassical methods.  The examples shown in this dissertation provide a 

demonstration of this code’s direct applicability to questions in physics where 

quantum phenomena are important.  In addition, this code provides a test bed 

to further develop and apply semiclassical techniques.  Finally, the experience 

accumulated while developing the code, and the code itself, is ground-breaking 

work and should be used as a guide in the development of future codes that 

model quantum mechanics using similar methods, helping to avoid the pitfalls 

already encountered and suggesting ways of finding reliable and accurate 

methods.  By establishing a foundation for this form of semiclassical methods, 

this code and its development supply building blocks and knowledge to the 

development of quantum-mechanical models in the future.  This endeavor, like 

others in science and in art, is “never finished, only abandoned.”  
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VIII. Appendix A 

- Development of a New Code 

A. Experimentation

Like many other pursuits, discovery and progress in science do not 

always proceed in a straight line, sometimes encountering problems and dead-

ends.  But, with patience and time, the correct path can be found, sometimes 

because of what was learned by encountering such errors.  This work is no 

exception.  There was a great deal that went wrong which led us to what was 

right.  Before finding the basic design that is common today, Thomas A. Edison 

tested hundreds of devices intended to be light bulbs.  In this Appendix, we 

present some of our bad light bulbs, in the hopes that others may learn as we 

did.  
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B. Virtual Particle Distribution

An early idea of much discussion was the distribution of the virtual 

classical paths.  In a plasma code, the classical particle data is retained and 

updated throughout the life of the simulation.  Some properties of quantum 

wavefunctions were known to be like classical plasmas, so the idea was 

proposed that the classical information in this quantum PIC code would also be 

retained throughout the life of the simulation.  (This idea is expressed in Figure 

4 of Reference 11.)  It took some time to create the tests that most clearly 

resolved the consequences of using this approach.  

The following comparison uses a pair of electrostatically repulsive 

quantum particles initialized as Gaussians.  These runs were identical except for 

the nature of the classical particle preparation.  One run has the classical 

information initialized with random positions and momenta, just like in a 

plasma code.  This information at the end of one quantum time step was used 

for the next.  The value of the initial wavefunction that these classical particles 

acquired was interpolated between grid points like how the plasma code 

interpolates electric field and potential information.  In the other run, the 

classical information was reinitialized on a space and momentum grid as 

described in Chapter III.  All other aspects of the code were identical.  Figure 35 

shows the comparison.  
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Figure 35.  A comparison of runs using randomly initialized classical 

information retained between time steps (top) versus regularly initialized 

classical information at every time step (bottom).  

Within a couple dozen time steps the result using the plasma-like classical paths 

shows the wavefunction being shredded (see t=3.8 in the figure).  This non-

physical behavior is serious enough that the simulation never fully recovers, 

while the run using classical data that is reinitialized at every time step shows 
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smooth behavior over many time steps.  

This behavior occurs because of a few likely reasons.  First, the classical 

paths, because of how long they are run, could become overpopulated in some 

parts of phase space, while leaving other portions undersampled.  Second, the 

nature of the random initialization could cause noise from this random 

arrangement to seep into the quantum wavefunction.  This behavior is much 

like the difference between Monte Carlo integration and other analytical 

techniques.  The stability and correctness of the wavefunction evolution 

intimately rely on the delicate cancellation of the virtual classical paths’ 

contributions.  In some ways, it is a wonder that all of these semiclassical 

calculations do not degenerate into what is shown in the top of this figure.  

C. Alternative Depositing 

The initial versions of the quantum PIC code were based on a grid-point 

representation of the wavefunction.  Using grid-point functions were 

considered a viable approach to representing and understanding a discretized 

quantum wavefunction.  Much of the calculation was unchanged from that 

shown in Chapter II and III, as a comparison between (98) and (55) will show.  

Simulations using this method did show qualitative features not unlike theory, 

and, in particular cases such as the SHO, some quantitative comparisons 
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showed great promise.  

However, as discussed in Section B of Chapter III, an energy loss in the 

simulation was noticed, studied, heard, and analyzed.  The root of the problem 

was found to be in the virtual classical particle deposit.  The net effect of the 

problem was as if the wavefunction was convoluted with the grid-point 

function every time step, which was, in retrospect, exactly what the code was 

doing.  

Therefore, we attempted revisions in the code to reverse the undesired 

effect.  In the context of the grid-point representation, the grid-point functions 

that formed the initial wavefunction were thought to “emit” virtual classical 

particles, while the grid-point functions forming the final wavefunction were 

thought to “collect” these particles.  Hence, the grid-points at the beginning and 

end were called “emitters” and “collectors”, respectively, a nomenclature 

inspired by leads of a transistor.  

Numerous ideas were attempted, many of which were variations on the 

functions for the emitter and collector grid-point functions.  The emitter 

functions were implemented in the particle preparation routine, while the 

wavefunction reconstruction/particle deposit routine handled the collectors.  

Many of these ideas were not explored chronologically in this order:  

• The plasma code’s charge deposit - The original algorithm for depositing 

charge on a grid in the plasma code was still present, and it served the 
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plasma code well, so we borrowed it for the earliest attempts in the 

virtual classical particle deposit.  It was among the worst high-

momentum attenuators.  

• Gaussian grid-point functions - Since a Gaussian is the only wavefunction 

known to possess the minimum uncertainty allowed by the Heisenberg 

uncertainty principle, it would sample the smallest piece of phase space 

possible, making this a natural choice.  The most obvious choice for the 

standard deviation  of the Gaussians was 0.5 grids.  This setup 

demonstrated an energy loss that was easy to predict analytically, which 

allowed us to confirm that this was the origin of the energy loss.  

Experiments with a variety of  from 0.3 to 0.75 were attempted in the 

hopes of discovering a value that minimized the energy loss.  A 

minimum loss for some test cases were found, but it was not a minimum 

for all.  

• Nearest neighbor - Virtual classical particles contribute only to the grid 

point closest to its final position.  This solution produced stable results, 

but the energy loss was greater.  

• Wide spread of contributions - Since it was conceivable that a virtual 

classical particle could contribute to more than one grid-point, its 

contributions were spread, with coefficients determined by the grid-

point function, to up to seven grids at a time.  This algorithm increased 
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the computation time without significant other benefit.  

• Momentum boosting in the emitters - What if the emitters could 

compensate for the loss in the collectors?  Since the particle distribution 

from each grid-point ranged evenly in momentum space, it was a simple 

matter to insert a multiplier as a function of initial momentum, 

enhancing the momentum distribution.  The problem that arose was that 

it often enhanced the noise as well, and the errors would grow 

exponentially, destroying the wavefunction.  Combinations of other 

emitters were attempted with other collectors.  Also, this approach had 

the conceptual problem of implying that the emitter and collector 

functions were not alike, even though that they should represent the 

same basis.  However, it did appear that the effects of the emitters and 

collectors were independent of each other.  

• Post-collector processing - After the virtual classical particles were 

deposited and the wavefunctions were reconstructed, a tridiagonal 

solver was performed to “un-convolute” the wavefunction, in the hopes 

of undoing the “damage” caused to the wavefunction.  It helped, but not 

in a way that was completely consistent with the attenuation.  

• Custom-shaped grid-point functions and other functional relationships - 

Attempts were made to determine grid-point functions whose Fourier 

transforms were flat for much of momentum space, then tapered off in 
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the range of momenta that “don’t matter”.  Some of these were based 

various combinations of exponentials.  The idea was: perhaps the 

attenuation was good to keep for the sake of stability, but a middle 

range of momenta could be preserved to retain the desired physics.  

Some of the functions attempted included instances of the Fermi-Dirac 

distribution function from statistics.  Two problems occurred: 1. the 

resulting function in position space was far more costly to determine and 

compute to justify keeping; and 2. The “interesting range” of momenta 

was found to be most of the possible momenta, so the tapering would 

be far too sharp to do any good.  

• Grid-point functions that were zero at neighboring grid-points - Perhaps 

a grid-point function could be constructed that was zero at integer grid-

points away, for example one like sin(πx)/ x .  Using transcendentals 

proved very costly computationally without significant benefit, and the 

function sin(πx)/ x  was not localized enough (i.e., did not decay fast 

enough) to be practical as a grid-point function.  Some were tried based 

on polynomials that achieved these conditions.  Others were designed 

based on superpositions of three to seven Gaussians, each at positions 

one grid-point away.  The idea was that a pair of Gaussians one grid 

away from the center would subtract the center one just enough to 

make the function zero at one grid-point away.  Then two more would 
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make the function zero another grid away, and so on.  The coefficients of 

these Gaussians were adjusted so that these conditions would hold.  

These tests were combined with a variety of ‘s for the Gaussians, and 

the emitters were made to match.  This produced the best and most 

stable results, reducing the energy loss from 1 part in 100 to 1 part in 

5000 per time step.   

For a long time, a loss of 1 part in 5000 for most wavefunctions was the 

best available.  It was only realized later that extending the derivation to its 

fullest extent led to the equations shown in Chapter II and III.  Interpreted in 

the above context, it described a emitter that was a delta function in space and a 

collector that was a delta function in momentum.  These are perhaps most 

extreme functions possible by comparison to the above, but it was clear these 

choices provided an even spread in their corresponding dual spaces.  

While the form described by (55) was attempted and found to be 

successful, the form of (51) seemed suggestive of a deposit in momentum 

space.  Such a deposit was attempted, and the FFT of the plasma code was used 

to solve for the wavefunction in position space.  Some of the same deposit 

functions used for the position basis collector methods were used for the 

momentum basis here, but it was clear that such solutions were not enough to 

adequately describe the momentum ket given by (51).  Part of the problem was 
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that the final momentum of the particle was usually in between grids in 

momentum space, so the proper representation on a discretized momentum 

space required a wide deposit of the form sin(πp)/ p .  This wide momentum 

deposit was constructed and tested.  While this depositor met with some 

success, it was not pursued further because it quickly became at least as costly 

as depositing a wave throughout all space.  It became clear, finally, that a wave 

deposited throughout all space was the solution that provided the best results.  

In the course of this work, some discussion was encountered concerning 

the physical justification of a particle affecting all space.  A wave arising from a 

path is analogous to how a ray of light hitting a wall represents an entire 

wavefront impinging on the surface.  At a moment in time, the surface receives 

light at a distribution of phase depending on the angle of incidence.  In this case, 

the final wavefunction receives the virtual classical particle in an identical 

distribution of phase depending on its momentum.  The paths could be thought 

to represent the flow of entire wavefronts, rather than simply particles.  

Conceptual worries about local effects being maintained despite a 

completely nonlocal deposit were pacified in light of how close to perfection 

this solution was.  Later, the optimization technique described in Section C of 

Chapter III was developed, and the wavefunction reconstruction routine has 

been largely unchanged ever since.  
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IX. Appendix B 

- Quantum PIC Source Code 

A. Source Code

To provide a concrete understanding of the structure of the quantum 

PIC code, its source code is provided here.  These listings, in Fortran, contain a 

large amount of dead code that is switched on and off via comments or if tests, 

allowing the same code to be used for a variety of experiments.  

B. Main Program Loop

      program babycq1
      use plib
      implicit none
! indx = exponent which determines length in x direction, 
nx=2**indx
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! npx = number of background particles distributed in x 
direction
! npxb = number of beam particles per species in x direction
! nspecies = number of species (e.g., quantum particles) 
! for monte carlo quantum: np/dx > 250
! for grided quantum: np/dx > 2*h (=128)
      integer :: indx, npx, npxb, nspecies
!      parameter( indx =   7, npxb = 0, nspecies = 1)
!      parameter( indx =   7, npxb = 0, nspecies = 2)
!      parameter( indx =   8, npxb = 0, nspecies = 16)
!      parameter( indx =   8, npxb = 0, nspecies = 16)
      parameter( indx =   11, npxb = 0, nspecies = 64)
!      parameter( indx =   7, npx =   20480, npxb = 0, 
nspecies = 1)
!      parameter( indx =   7, npx =   20480, npxb = 0, 
nspecies = 2)
!      parameter( indx =   8, npx =   81920, npxb = 0, 
nspecies = 1)
!      parameter( indx =   8, npx =   81920, npxb = 0, 
nspecies = 16)
!     parameter( indx =  11, npx =  409600, npxb = 0, 
nspecies = 1)
!     parameter( indx =  14, npx = 4096000, npxb = 409600, 
nspecies =1)
!     parameter( indx=18, npx = 40960000, npxb = 4096000, 
nspecies = 1)
! tend = time at end of simulation, in units of plasma 
frequency
! dt = time interval between successive classical 
calculations
      real :: tend, dt, tcptq, vscale, sigma, div2sigsq
      parameter( tend =  104.000, dt = 0.20000e+00)
      parameter( tcptq = 32, vscale = tcptq)
!      parameter( tcptq = 32, vscale = 32.0)

  parameter( sigma = 0.5, div2sigsq = 
0.5/(sigma*sigma)) 
! vtx = thermal velocity of electrons in x direction
! vdx = drift velocity of beam electrons x direction
! vtdx = thermal velocity of beam electrons in x direction
      real :: vtx, vdx, vtdx, avdx
      parameter( vtx =   1.000, vdx =  0.000, vtdx =  1.00)
! avdx = absolute value of drift velocity of beam electrons 
x direction
      parameter( avdx =   5.000)
! npx is determined by maintaining a particle density and a 
spread in phase space
      parameter( npx = (2**indx)*(2**indx) )
!      parameter( npx = 10*(2**indx)*(vtx*dt*tcptq*2) )
! indnvp = exponent determining number of real or virtual 
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processors
! indnvp must be < indx
! idps = number of partition boundaries
! idimp = dimension of phase space = 2
! mshare = (0,1) = (no,yes) architecture is shared memory
      integer :: indnvp, idps, idimp, mshare, np, nx, nxh, 
nloop
      parameter( indnvp =   4, idps =    2, idimp =   8, 
mshare =   0)
! np = total number of electrons in simulation
      parameter(np=npx+npxb)
      parameter(nx=2**indx,nxh=nx/2)
! nloop = number of time steps in simulation
      parameter(nloop=tend*vscale/(tcptq*dt)+.0001)
! nvp = number of real or virtual processors, nvp = 
2**indnvp
! nblok = number of particle partitions
      integer :: nvp, nblok
      parameter(nvp=2**indnvp,nblok=1+mshare*(nvp-1))
! npmax = maximum number of particles in each partition
! nxpmx = maximum size of particle partition, including 
guard cells.
      integer :: npmax, nxpmx
      parameter(npmax=(np/nvp)*1.21+250,nxpmx=(nx-1)/nvp+4)
! kxp = number of complex grids in each field partition
! kblok = number of field paritions
      integer :: kxp, kblok, nbmax, ntmax
      parameter(kxp=(nxh-1)/nvp+1,kblok=1+mshare*(nxh/kxp-
1))
      integer :: kxpc, kblokc
      parameter(kxpc=(nx-1)/nvp+1,kblokc=1+mshare*(nx/kxpc-
1))
! nbmax = size of buffer for passing particles between 
processors
      
parameter(nbmax=1+(2*(npx*vtx+npxb*vtdx)+1.4*npxb*avdx)*dt/n
x)
! ntmax = size of hole array for particles leaving 
processors
      parameter(ntmax=2*nbmax)
      complex wfcn, wf, wfl, wfl2, ffc, fc, qc, pc, sct

  complex qkinH, qptot, wkinH, wfp
! wfcn(j,l,k) = wavefunction at j of species l in partition 
k
      dimension wfcn(nxpmx,nspecies,nblok)
      real :: pi, twopi, planck, planckbar, divhbar
      parameter(pi=3.1415962535897932384626433832795028)
      parameter(twopi=6.28318530717959)
! planck = Planck's constant 
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      parameter(planck=2*tcptq)
!      parameter(planck=64)

  
parameter(planckbar=planck/(2*pi),divhbar=2*pi/planck)
      complex :: wmult
      real :: part, q, fx, pt
      common /large/ part
! part(1,n,l,k) = position x of particle n of species l in 
partition k
! part(2,n,l,k) = velocity vx of particle n of species l in 
partition k
! part(3,n,l,k) = action S of particle n of species l in 
partition k
! part(4,n,l,k) = magnitude of particle n's piece of species 
l in partition k
! part(5,n,l,k) = phase of particle n's piece of species l 
in partition k
! part(6,n,l,k) = det of step i of particle n of species l 
in partition k
! part(7,n,l,k) = det of step i-1 of particle n of species l 
in partition k
      dimension part(idimp,npmax,nblok)
!      dimension part(idimp,npmax,nspecies,nblok)
!      integer :: btree
!      dimension btree(4, npmax, nspecies, nblok)
! q(j,l,k) = charge density l at grid point jj, where jj = j 
+ noff(k) - 1
! fx(j,l,k) = force/charge l at grid point jj, that is 
convolution of
! electric field over particle shape, where jj = j + noff(k) 
- 1
      dimension q(nxpmx,nspecies,nblok), 
fx(nxpmx,nspecies,nblok)
      dimension pt(nxpmx,nspecies,nblok)
! qc(j,k) = complex charge density for fourier mode jj - 1
! fc(j,k) = complex force/charge for fourier mode jj - 1
! where jj = j + kxp*(k - 1)
      dimension qc(kxp,kblok), fc(kxp,kblok)
      dimension pc(kxp,kblok)
! ffc = complex form factor array for poisson solver
      dimension ffc(kxp,kblok)
! mixup = array of bit reversed addresses for fft
! sct = sine/cosine table for fft
      integer :: mixup
      dimension mixup(kxp,kblok), sct(kxp,kblok)
      integer, dimension(kxpc,kblokc) :: mixupc
      complex, dimension(kxpc,kblokc) :: sctc
! edges(1,k) = left boundary of particle partition k
! edges(2,k) = right boundary of particle partition k
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      real :: edges
      dimension edges(idps,nblok)
! nxp(k) = number of primary gridpoints in particle 
partition k.
! noff(k) = leftmost global gridpoint in particle partition 
k.
      integer :: nxp, noff, npp, nps
      dimension nxp(nblok), noff(nblok)
! noffglob(k) = leftmost global gridpoint in processor k.
      integer, dimension(nvp) :: noffglob
! nxpglob(k) = number of primary gridpoints in processor k.
      integer, dimension(nvp) :: nxpglob
! npp(l,k) = number of particles of species l in partition k
! nps(l,k) = starting address of particles of species l in 
partition k
      dimension npp(nspecies, nblok), nps(nspecies, nblok)
! sbufl = buffer for particles being sent to left processor
! sbufr = buffer for particles being sent to right processor
      real :: sbufl, sbufr, rbufl, rbufr
      dimension sbufl(idimp,nbmax,nblok), 
sbufr(idimp,nbmax,nblok)
! rbufl = buffer for particles being received from left 
processor
! rbufr = buffer for particles being received from right 
processor
      dimension rbufl(idimp,nbmax,nblok), 
rbufr(idimp,nbmax,nblok)
! ihole = location of holes left in particle arrays
      integer :: ihole, jsl, jsr, jss
      dimension ihole(ntmax,nblok)
! jsl(idps,k) = number of particles going left in particle 
partition k
! jsr(idps,k) = number of particles going right in particle 
partition k
      dimension jsl(idps,nblok), jsr(idps,nblok)
! jss(idps,k) = scratch array for particle partition k
! scr(idps,k) = scratch array for particle partition k
      real :: scr
      dimension jss(idps,nblok), scr(idps,nblok)
  991 format (5h t = ,i7)
  992 format (19h * * * q.e.d. * * *)
  993 format (34h field, kinetic, total energies = ,3e14.7)
! qme = charge on electron, in units of e
! ax = half-width of particle in x direction
!      data qme,ax /-1.,.8666667/
      real :: qme, ax
      data qme,ax /-1.00,.8666667/   ! 
!      data qme,ax /-0.12500000,.8666667/   ! 
!      data qme,ax /-0.09973557,.8666667/   ! sqrt(1/8π)/2
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!      data qme,ax /-0.1994711402,.8666667/   ! sqrt(1/8π)
!      data qme,ax /-0.25,.8666667/
!      data qme,ax /-0.5,.8666667/
!      data qme,ax /-1.0,.8666667/
      integer :: nproc, lgrp, mreal, mint, mcplx
      common /pparms/ nproc, lgrp, mreal, mint, mcplx

      integer, parameter :: cxexpsize = 1024   ! table for 
wdeposit
      complex, dimension(cxexpsize+1+cxexpsize+1) :: cxexpt
      
      integer, parameter :: deltarestartindex = 10   ! 
number of quantum pushes between rewrites
      
      
! Variables used in main
      integer :: kstrt, k, l, itime, idproc, j, joff, isign, 
nxp3, lt
      integer :: kw, kt, nextrestartindex, ierr, msid, lstat
      parameter (lstat = 8)
      integer, dimension(lstat) :: istatus
      real, dimension(nspecies) :: initialPosition, 
initialMomentum
      real :: anx, qtme, affp, zero, qi0, etime, we, pkx, 
wke, wt
      real :: bcoeff, ccoeff, dcoeff, avex, avesqx, wptH, 
qptH, qiw
      real :: avedet, avedet2
      complex :: tempCx

! initialize for parallel processing
!      write (6,*) 'initializing PP'
      print *, 'initializing PP'
      call ppinit(idproc,nvp)
      open(unit=6,file='output1-
'//char(48+(idproc/10))//char(48+idproc-10*(idproc/10)), &
     &   
FORM="FORMATTED",STATUS="UNKNOWN",POSITION="APPEND")

  kstrt = idproc + 1
! initialize timer
      call timera(-1,'total   ',etime)
! initialize constants
      itime = 0
      anx = float(nx)
      qtme = qme*dt
      affp = anx/float(np*nspecies)
      zero = 0.

      cxexpt(1) = -1
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!   sigma = sqrt(0.15) = 0.387298335
!   sigH = sigma+0.02
!   sigL = sigma-0.02
!   wLastH = 0.

  bcoeff = -exp(-div2sigsq)/(1+exp(-4*div2sigsq))
      ccoeff = 0.0 
      bcoeff = 0.0 

  
      if (.false.) then 

  bcoeff = exp(-div2sigsq)*((1+exp(-2*div2sigsq))**2)*&
 &(exp(-2*div2sigsq)-1-exp(-4*div2sigsq))/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+exp(-

8*div2sigsq)+exp(-12*div2sigsq))
  ccoeff = exp(-2*div2sigsq)/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+exp(-

8*div2sigsq)+exp(-12*div2sigsq)) 
  end if 

      dcoeff = 0.0 
      
      if (.false.) then 

  bcoeff = -exp(-div2sigsq)*(1+exp(-2*div2sigsq)+exp(-
4*div2sigsq)+exp(-6*div2sigsq)&

 &+2*exp(-8*div2sigsq)+3*exp(-10*div2sigsq)+2*exp(-
12*div2sigsq))/(&

 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+2*exp(-
8*div2sigsq)+&

 &2*exp(-10*div2sigsq)+exp(-12*div2sigsq)+exp(-
16*div2sigsq))&

 &*(1+exp(-8*div2sigsq)) )
  ccoeff = exp(-2*div2sigsq)*(1+exp(-2*div2sigsq)+exp(-

4*div2sigsq))/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+2*exp(-

8*div2sigsq)+&
 &2*exp(-10*div2sigsq)+exp(-12*div2sigsq)+exp(-

16*div2sigsq)) 
  dcoeff = -exp(-3*div2sigsq)/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+3*exp(-

8*div2sigsq)+&
 &2*exp(-10*div2sigsq)+2*exp(-12*div2sigsq)+3*exp(-

16*div2sigsq)) 
  end if 
  

! calculate partition variables
      call dcomp1(edges,nxp,noff,nx,kstrt,nvp,idps,nblok)
! for distributed mpi - assuming fixed partition edges
      call 
MPI_ALLGATHER(noff,1,mint,noffglob,1,mint,lgrp,ierr)
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      call 
MPI_ALLGATHER(nxp,1,mint,nxpglob,1,mint,lgrp,ierr)
!      write (6,*) 'noff(:)',noffglob, 'nxp(:)',nxpglob
      
      if (.true.) then 
       noffglob(1+idproc) = noff(1)
       nxpglob(1+idproc) = nxp(1)
        do kw=0,nvp-1       ! This loop is structured this 
way so we don't get a 
         if (kw.gt.0) then  ! compiler error: underflowed 
register count
          kt = 1 + idproc - kw 
          if (kt.lt.1) kt = kt + nvp
   ! recieve into the right spot
          call MPI_IRECV(noffglob(kt),1,mint,kt-
1,kw,lgrp,msid,ierr)
          kt = 1 + idproc + kw 
          if (kt.gt.nvp) kt = kt - nvp
   ! send data to the one who needs it 
          call MPI_SEND(noff(1),1,mint,kt-1,kw,lgrp,ierr)
          call MPI_WAIT(msid,istatus,ierr)
                    
          kt = 1 + idproc - kw 
          if (kt.lt.1) kt = kt + nvp
   ! recieve into the right spot 
          call MPI_IRECV(nxpglob(kt),1,mint,kt-
1,kw,lgrp,msid,ierr)
          kt = 1 + idproc + kw 
          if (kt.gt.nvp) kt = kt - nvp
   ! send data to the one who needs it 
          call MPI_SEND(nxp(1),1,mint,kt-1,kw,lgrp,ierr)
          call MPI_WAIT(msid,istatus,ierr)
          
         end if
        end do
!      write (6,*) 'noff(:)',noffglob, 'nxp(:)',nxpglob
      end if 
      

! prepare fft tables
      isign = 0
      call 
pfft1r(qc,fc,isign,mixup,sct,indx,kstrt,kxp,kblok)
      call 
pfft1c(qc,fc,isign,mixupc,sctc,indx,kstrt,kxpc,kblokc)
! calculate form factors
      call ppois1 
(qc,fc,isign,ffc,ax,affp,we,nx,kstrt,kxp,kblok)
! initial density profile and maxwellian velocity 
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distribution
! background electrons
      write (6,*) 'init background es'
      do 120 k = 1, nblok
        do l=1,nspecies
          nps(l,k) = 1
          npp(l,k) = 0
        enddo
      nxp3 = nxp(k) + 3
  120 continue
!      if (npx.gt.0) call pistr1 
(part,edges,npp,nps,vtx,zero,npx,nx,    &
!     &idimp,npmax,nblok,idps,nspecies)
! beam electrons
      do 140 k = 1, nblok
        do l=1,nspecies
          nps(l,k) = npp(l,k) + 1
        enddo
  140 continue
!      if (npxb.gt.0) call pistr1 
(part,edges,npp,nps,vtdx,vdx,npxb,nx,  &
!     &idimp,npmax,nblok,idps,nspecies)
      
! Initialize wavefunctions as normalized Gaussians moving at 
various velocities 
      write (6,*) 'Initializing wavefunctions'

      if (.true.) then
        call 
classicalICs(initialPosition,initialMomentum,nspecies,nx,  &
     &    planck)
      end if
           
      qi0 = sqrt(0.01/pi) 
      do k=1,nblok
!        nxp3 = nxp(k) + 3
        joff = noff(k) - 2
        do l=1,nspecies
          pkx = twopi*initialMomentum(l) 
!          pkx = 2*pi*(8.5-l)*2/(nspecies*6) 
!          pkx = 2*pi*0/nx 
!          pkx = -0.06125*(l-1.5)
!          pkx = 0.5 - 1.1*2.0*(l-0.5*(1+nspecies))/nspecies
!          pkx = 0
!      print *, 'first zero ',8-joff
          do j=1,nxpmx 
            if (.false.) then
              wfcn(j,l,k) = exp(-0.25/(4**2)*(j + joff - 
(l+0.5)*nx/(nspecies+2) + 0)**2) *&
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     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
            end if
           
            if (.true.) then
              wfcn(j,l,k) = exp(-0.25/(4**2)*(j + joff - 
initialPosition(l))**2) *&
     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
            end if
           
            if (.false.) then
              wfcn(j,l,k) = exp(-0.01*(j + joff - 
((l)*nx/(nspecies+1) + 0) )**2) *&
     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
            end if
           
            if (.false.) then
              wfcn(j,l,k) = sin( (j + joff - 
2.0)*(1.0)*twopi*0.5/(nx-4) )*&
     &exp(-0.0001*(j + joff - ((l)*nx/(nspecies+1) + 0) 
)**2) *&
     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
            end if
           
            if (.false.) then
              wfcn(j,l,k) = sin( (j + joff - 
2.0)*(l+6)*twopi*0.5/(nx-4) ) * qi0
            end if
           
            if (.false.) then
              tempCx = 0
              do lt=1,5
                tempCx = tempCx + sin( (j + joff - 
2.0)*(lt)*twopi*0.5/(nx-4) ) *&
     & (1.0/lt) * cmplx(cos(twopi*(0.2*lt)*(2*l-3)), 
sin(twopi*(0.2*lt)*(2*l-3)))
              end do
              wfcn(j,l,k) = tempCx * qi0
            end if
           
             if (.false.) then
              wfcn(j,l,k) = sin( (j + joff - 
2.0)*(1.0)*twopi*0.5/(nx-4) )*&
     &exp(-0.01*(j + joff - ((l+3)*nx/(nspecies+6) + 0) 
)**2) *&
     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
            end if
           
             if (.false.) then
              wfcn(j,l,k) = exp(-0.01*(j + joff - 
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((l+3)*nx/(nspecies+5)) )**2) *&
     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
            end if
           
             if (.false.) then
              if (j.eq.1) print *, 
(twopi/(256.0*(2.0**(1.0/3))))
              wfcn(j,l,k) = exp(-
(twopi/(256.0*(2.0**(1.0/3))))*(j + joff - 
((l+1)*nx/(nspecies+3)) )**2) *&
     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
            end if
           
             if (.false.) then
              if (j.eq.1) print *, 
(twopi/(256.0*(2.0**(1.0/3))))
              wfcn(j,l,k) = exp(-
(twopi/(256.0*(2.0**(1.0/3))))*(j + joff - 
((l+1)*nx/(nspecies+3)) )**2) *&
     &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff))) * (j 
+ joff - (nx/2))
            end if
           
           if (.false.) then
              wfcn(j,l,k) = cmplx(cos(pkx*(j+joff)), 
sin(pkx*(j+joff))) / nx
            end if
            
            if (.false.) then
              if ( (j + joff).eq.((l+2)*nx/(nspecies+1+4)) ) 
then 
                   wfcn(j,l,k) = 1.0 
              else 
                wfcn(j,l,k) = 0 
              end if
            end if
            
            if (.false.) then
              qi0 = (j + joff - 1 - nx/2)
              pkx = qi0*qi0*divhbar*(1.0/8.0) 
              wfcn(j,l,k) = exp(-
(1.0/8.0)*0.5*divhbar*qi0**2) * &
     &(1 + qi0 *(.25 - 0.02*((4*pkx-20)*pkx+15) + 
0.004*(((8*pkx-84)*pkx+210)*pkx-105) ) ) 
!     &(1 + 0*qi0 *(0.75 - 0.2*((4*pkx-20)*pkx+15) + 
0.01*(((8*pkx-84)*pkx+210)*pkx-105) ) ) 
            end if
            
!            write (6,*) wfcn(j,l,k) 
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          enddo
        enddo
      enddo

! calculate background ion density
!     qi0 = -qme/affp
!      wmult = sqrt( divhbar * vscale / (2 * pi * dt * 
tcptq)) * nx / np &
!     &* cmplx(cos(0.25*pi),sin(-0.25*pi))
!      wmult = tcptq * vtx * dt * nx / real(np)  &
!     &* cmplx(cos(0*pi),sin(-0*pi))
      wmult = nx / ( real(np) ) &
     &* cmplx(cos(0*pi),sin(-0*pi))
      write (6,*) 'npx= ', npx, '  h= ', planck
      write (6,*) wmult,divhbar, bcoeff, ccoeff, dcoeff
      write (6,*) 'noff(:)',noffglob, 'nxp(:)',nxpglob
      
      
      do k = -5, 4
        qiw = 0.5*k + 0.2
        j = qiw + .5
        print *, qiw, j
      end do

      write (6,*) 'opening wavefunction file'
      
      nextrestartindex = deltarestartindex
      if (prepareifrestarting(nloop,nspecies,nx,idproc,nvp,&
     &     wfcn,noffglob,nxpglob,nblok,nxpmx,itime)) then
        
        nextrestartindex = nspecies * itime + 
deltarestartindex/2
      else 
      if (idproc.eq.0) then
      
!Open wavefunction file
      open (unit=9,file="outputW",status="REPLACE")
      write (9,*) 'NSTEPS=', nloop 
      write (9,*) 'NQ=',nspecies
      write (9,*) 'NX=',nx
      write (9,*) 'START'
      
      call openbinarywf(nloop,nspecies,nx,idproc,nvp)

      end if 
      end if

!
! * * * start main iteration loop * * *
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!
      write (6,*) 'begin data'
  500 if (nloop.le.itime) go to 2000
      if (kstrt.eq.1) write (6,991) itime
      print *,'tstep',itime,'/',nloop
      wke = 0.

  qkinH = 0.
  qptH = 0.
  qptot = 0.
  

!   sigma = 0.5*(sigH+sigL)
!   write (6,*) 'sigma = ', sigma
!   div2sigsq = 0.5/(sigma*sigma)

      do k = 1, nblok
        do j = 1, nxpmx
          do l=1,nspecies
! initialize charge density to zero
            q(j,l,k) = 0.0
          enddo
        enddo
      enddo
! deposit charge   using qme |wfcn|^2 leaving out self-
energy
      do 1190 k = 1, nblok
! only where we need to
      do 1180 j = 1, nxp(k)
      do l=1,nspecies
      qiw = qme*(real(wfcn(j+1,l,k))**2 + 
aimag(wfcn(j+1,l,k))**2)
        do lt=1,nspecies
          if (l.ne.lt) then
            q(j+1,lt,k) = q(j+1,lt,k) + qiw
          end if
        enddo
      enddo
 1180 continue
 1190 continue
      
      do l=1,nspecies
      print *,'Computing Fields'
      
! transform charge to fourier space
      isign = -1
! copy data from particle to field partition, and add up 
guard cells
      call cppfp1 
(q,qc,isign,scr,kstrt,nvp,nxpmx,nblok,kxp,kblok,idps, &
     &l,nspecies)
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      call 
pfft1r(qc,fc,isign,mixup,sct,indx,kstrt,kxp,kblok)
! calculate force/charge in fourier space
      call ppois1 
(qc,fc,isign,ffc,ax,affp,we,nx,kstrt,kxp,kblok)
! transform force/charge to real space
      isign = 1
      call ppois1 
(qc,pc,isign,ffc,ax,affp,we,nx,kstrt,kxp,kblok)
      call 
pfft1r(fc,qc,isign,mixup,sct,indx,kstrt,kxp,kblok)
      call 
pfft1r(pc,qc,isign,mixup,sct,indx,kstrt,kxp,kblok)
! copy data from field to particle partition, and copy to 
guard cells
      call cppfp1 
(fx,fc,isign,scr,kstrt,nvp,nxpmx,nblok,kxp,kblok,idps,&
     &l,nspecies)
      call cppfp1 
(pt,pc,isign,scr,kstrt,nvp,nxpmx,nblok,kxp,kblok,idps,&
     &l,nspecies)
! particle push and charge density update
!     call timera(-1,'push    ')
            
      if (.true.) call 
addexternalpot(fx,pt,l,noff,itime,qtme,dt,vscale,tcptq,nxpmx
,nblok,nspecies,nx)
      
      if (.true.) then 
      print *,'Preparing particles'
! initialize particles 
      call 
pprepw(wfcn,part,npp,noff,nxp,vtx,vscale,divhbar,dt,   &

 
&l,sigma,nx,npx,idimp,npmax,nblok,nxpmx,nspecies,idproc,nvp)
      
      print *,'Pushing particles'
! push particles 
!        if (.false.) then 
!      print *,'preparing btree'
!      call 
preparebt(part,btree,npp,noff,idimp,npmax,nblok,nxpmx, &
!     &l,nspecies)
!        end if
      do k=1,tcptq
!        if (.false.) then 
!      print *,'  push'
!      call 
ppush1bt(part,fx,npp,noff,qtme,dt,wke,idimp,npmax,nblok,nxpm

183



x, &
!     &nx,l,nspecies,pt,btree)
!        else 
      call 
ppush1(part,fx,npp,noff,qtme,dt,wke,idimp,npmax,nblok,nxpmx, 
&
     &nx,l,nspecies,pt)
!        end if
! move particles into appropriate spatial regions
      call pmove1 
(part,edges,npp,sbufr,sbufl,rbufr,rbufl,ihole,jsr,jsl,&
     
&jss,nx,kstrt,nvp,idimp,npmax,nblok,idps,nbmax,ntmax,ierr,l,       
&
     &nspecies)
      enddo
      
      print *,'Depositing wavefunction'
! push wavefunctions 
      call 
wdeposit(wfcn,part,npp,noff,nxp,indx,l,divhbar,wmult,dt,    
&
     
&div2sigsq,idimp,npmax,nblok,nvp,idproc,nxpmx,nspecies,vscal
e,  &
     &noffglob,nxpglob,kxpc,kblokc,mixupc,sctc,cxexpt)
      
      else
      
      qi0 = sqrt(0.02/pi)
      do k=1,nblok
        joff = noff(k) - 1
          pkx = 1.0*(l-1.0) 
          do j=1,nxpmx 
            wfcn(j,l,k) = exp(-
(0.01/cmplx(1,(1+itime)*dt*planckbar*0.02))*&
     &(j + joff - l*nx/(nspecies+1))**2) *qi0 
          enddo
      enddo
      
      end if 
      
      print *,'Running diagnostics'
! Run diagnostics and renormalize
!      qi0 = qme
      call 
wdiagn(wfcn,noff,nxp,qiw,avex,avesqx,wkinH,wptH,wfp,pt,&
     
&planckbar,div2sigsq,vscale,l,npmax,nblok,nxpmx,nspecies,idp
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roc,nvp,&
     &idimp,part,npp,avedet,avedet2,nx,qme)

      write (6,*) l,' size is ',qiw,' at ',avex,' width 
',sqrt(avesqx-avex*avex)
      write (6,*) l,' avedet is ',avedet,'  width 
',sqrt(avedet2-avedet*avedet)
      write (6,*) ' kin, pot, H, p 
',wkinH,wptH,wkinH+wptH,wfp
      
      if (.false.) then 
      write (9,*) itime, l
      do k = 1, nblok
        do j = 1, nxp(k)
          write (9,*) wfcn(j+1,l,k)
        end do
        write (8) wfcn(:,l,k)
      end do      
      

  endfile 9
  backspace 9
  else 
  
  call 

wcollatendump(wfcn,noffglob,nxpglob,nblok,nxpmx,itime,l,nspe
cies,idproc,nvp)

  
  end if 
  

      qkinH = qkinH + wkinH
      qptH = qptH + wptH
      qptot = qptot + wfp

  
  do k=1,nblok

      write (6,*) k, npp(l,k)
  enddo 
  
  endfile 6
  backspace 6

! call flush(9)
  
  if (.not.(real(wfcn(2,1,1)).gt.real(wfcn(3,1,1)))) 

then
  if (.not.(real(wfcn(2,1,1)).lt.real(wfcn(3,1,1)))) 

then 
  if (.not.(real(wfcn(2,1,1)).eq.real(wfcn(3,1,1)))) 

then 
! we might have a NaN

    write (6,*) 'NaN?'
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itime = nloop
call MPI_ABORT(lgrp, 255, ierr)
exit 

  endif
  endif
  endif
  

      end do
      
      if (ierr.eq.1) then 
      write (6,*) 'init background es'
      do k = 1, nblok
        do l=1,nspecies
          nps(l,k) = 1
          npp(l,k) = 0
        enddo
      nxp3 = nxp(k) + 3
      enddo
      if (npx.gt.0) call pistr1 
(part,edges,npp,nps,vtx,zero,npx,nx,    &
     &idimp,npmax,nblok,idps,nspecies)
      endif

  
!     call timera(1,'push    ',etime)
! energy diagnostic, now meaningless
      wt = we + wke
      if (kstrt.eq.1) then 

    write (6,993) we, wke, wt
write (6,*) 'qkin, qpt, Htot, ptot', qkinH, qptH, 

qkinH+qptH, qptot 
      endif

  
  if ((itime*nspecies).ge.nextrestartindex) then
    nextrestartindex = itime*nspecies + 

deltarestartindex
        
        if (idproc.eq.0) then 
! flush does not exist, it seems
          endfile 9
          backspace 9

    
!          endfile 8
!          backspace 8
          call fuflush()

    
          write (6,*) 'Writing restart info file'
          endfile 6
          backspace 6
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          open (unit=11, file='restartinfo', 
status="REPLACE") 

    
          write (11,*) itime
          write (11,*) nextrestartindex

    
          endfile 11

    
          close(unit=11)
        end if

    
    print *, '  Press Command-. to stop simulation'
    
  end if
  

      itime = itime + 1
      go to 500
 2000 continue
!
! * * * end main iteration loop * * *
!
      if (idproc.eq.0) then 
        write (9,*) 'END'
        
        call fuclose()

        if (itime.ge.nloop) then ! it's the end, protect the 
data
          open (unit=11, file='restartinfo', 
status="REPLACE") 
        
          write (11,*) itime
          write (11,*) -1

    
          close(unit=11)
        end if
        
      end if

      if (kstrt.eq.1) write (6,992)
      call timera(1,'total   ',etime)
      call ppexit
!      pause
      stop
      end program

Listing A.  A listing of the main program of the quantum PIC code.  
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C. External Potential

      subroutine 
addexternalpot(fx,pt,l,noff,itime,qtm,dt,vscale,tcptq,nxpmx,
nblok,nspecies,nx)
! for 1d code, this subroutine adds an external potential to 
the pt and fx arrays 
! in space, with periodic boundary conditions, for 
distributed data.
! fx(j,k) = force/charge at grid point jj, that is 
convolution of
! electric field over particle shape, where jj = j + noff(k) 
- 1
! noff(k) = leftmost global gridpoint in particle partition 
k.
! qtm = particle charge/mass ratio times dt
! dt = time interval between successive calculations
! nblok = number of particle partitions.
! nxpmx = maximum size of particle partition, including 
guard cells.
! scalar version with spatial decomposition
      implicit none
      integer :: l, itime, nblok, nxpmx, nspecies, nx
      real :: qtm, dt, vscale, tcptq
      real, dimension(nxpmx,nspecies,nblok) :: fx, pt
      integer, dimension(nblok) :: nxp, noff
      real :: omegasq, slope, adjustment, rtemp, height
      integer :: j, k, joff, xt, width
      parameter(omegasq = (1.0/8.0)**2, slope = 1.0/4.0, 
width = 4, height=16.0) 
      
! This accounts for the unusual units that pt and fx take
      adjustment = dt/(qtm*(vscale**2))
      
      do k=1,nblok
        joff = noff(k) - 2
        do j=1,nxpmx 
          if (.false.) then
!            ! Simple Harmonic Oscillator
            xt = j + joff - nx/2
            pt(j,l,k) = pt(j,l,k) + 
adjustment*0.5*omegasq*(xt**2) 
            fx(j,l,k) = fx(j,l,k) - adjustment*omegasq*xt 
          end if 
          
          if (.false.) then
!            ! time dependent ramp 
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            if ((itime*dt).ge.1) then 
              xt = j + joff - nx/2
              rtemp = -1*exp(-0.25*(itime*dt-1))
              pt(j,l,k) = pt(j,l,k) + adjustment*rtemp*xt 
              fx(j,l,k) = fx(j,l,k) - adjustment*rtemp 
            end if
          end if 
          
          if (.false.) then 
!            ! Triagular barrier or well 
            xt = (j + joff - nx/2)
            if (abs(xt).le.width) then 
              if (xt.lt.0) then 
                pt(j,l,k) = pt(j,l,k) + 
adjustment*slope*(xt+width) 
                fx(j,l,k) = fx(j,l,k) - adjustment*slope 
              else
                pt(j,l,k) = pt(j,l,k) + 
adjustment*slope*(width-xt) 
                fx(j,l,k) = fx(j,l,k) + adjustment*slope 
              end if
            end if 
          end if 
          
          if (.false.) then
!            ! Rectangular barrier or well 
            xt = (j + joff - nx/2)
            if (abs(xt).le.width) then 
             if (abs(xt).gt.(width-2)) then 
              if (xt.lt.0) then 
                pt(j,l,k) = pt(j,l,k) + 
adjustment*height*0.5*(xt+width) 
                fx(j,l,k) = fx(j,l,k) - 
adjustment*height*0.5 
              else
                pt(j,l,k) = pt(j,l,k) + 
adjustment*height*(width-xt) 
                fx(j,l,k) = fx(j,l,k) + 
adjustment*height*0.5 
              end if
             else 
                pt(j,l,k) = pt(j,l,k) + adjustment*height 
             end if 
            end if 
          end if 
          
          if (.false.) then
!            Side walls     ? 
            xt = (j + joff - nx/2)
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            if (abs(xt).ge.(nx/2 - 3)) then 
              if (xt.lt.0) then 
                pt(j,l,k) = pt(j,l,k) - 
adjustment*64*0.5*((nx/2 - 3) + xt) 
                fx(j,l,k) = fx(j,l,k) + adjustment*64*0.5 
              else
                pt(j,l,k) = pt(j,l,k) - 
adjustment*64*0.5*((nx/2 - 3) - xt) 
                fx(j,l,k) = fx(j,l,k) - adjustment*64*0.5 
              end if
            end if 
          end if 
          
          if (.false.) then
!            ! Simple Harmonic Oscillator potentials
            xt = j + joff - l*nx/(nspecies+1)
            pt(j,l,k) = pt(j,l,k) + 
adjustment*0.5*omegasq*(xt**2) 
            fx(j,l,k) = fx(j,l,k) - adjustment*omegasq*xt 
          end if 
          
          if (.false.) then
!            ! 1-D atom potentials
            xt = j + joff - nx/2
              if (xt.lt.0) then 
                pt(j,l,k) = pt(j,l,k) - 
adjustment*slope*(xt) 
                fx(j,l,k) = fx(j,l,k) + adjustment*slope 
              else if (xt.gt.0) then 
                pt(j,l,k) = pt(j,l,k) + 
adjustment*slope*(xt) 
                fx(j,l,k) = fx(j,l,k) - adjustment*slope 
              end if
          end if 
          
          
        enddo
      enddo
      
      end subroutine

Listing B.  The external potential routine.  

D. Particle Preparation
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      subroutine 
pprepw(wfcn,part,npp,noff,nxp,vtx,vscale,divhbar,dt,   &

 
&l,sigma,nx,npx,idimp,npmax,nblok,nxpmx,nspecies,idproc,nvp)
! for 1d code, this subroutine stores wavefunction density
! using second-order spline interpolation, with periodic 
boundaries
! and distributed data into the particle array.
! density is approximated by values at the nearest grid 
points
! q(n)=qm*(.75-dx**2), q(n+1)=.5*qm*(.5+dx)**2, q(n-
1)=.5*qm*(.5-dx)**2
! where n = nearest grid point and dx = x-n
! part(1,n,l,k) = position x of particle n of species l in 
partition k
! q(j,l,k) = species l density at grid point jj, where jj = 
j + noff(k)-1
! wfcn = given complex valued wavefunction
! part = particle data
! npp(l,k) = number of particles of species l in partition k
! noff(k) = leftmost global gridpoint in particle partition 
k.
! idimp = size of phase space + action + old position
! npmax = maximum number of particles in each partition
! nblok = number of particle partitions.
! nvp = number of (virtual) processors.
! nxpmx = maximum size of particle partition, including 
guard cells.
! complex scalar version with spatial decomposition
      implicit none
! common block for parallel processing
      integer nproc, lgrp, lstat, mreal, mint, mcplx
! lstat = length of status array
      parameter(lstat=8)
! lgrp = current communicator
! mreal = default datatype for reals
      common /pparms/ nproc, lgrp, mreal, mint, mcplx

      integer :: npp, noff, l, idimp, npmax, nblok, nxpmx, 
nspecies
      integer :: nx, npx, idproc, nvp
      real :: part, vtx, vscale, divhbar, dt, sigma, bcoeff, 
ccoeff, dcoeff 
      complex, dimension(nxpmx,nspecies,nblok) :: wfcn
      dimension part(idimp,npmax,nblok)
!      dimension part(idimp,npmax,nspecies,nblok)
      dimension npp(nspecies,nblok), noff(nblok)
      integer, dimension(nblok) :: nxp
      complex :: wf, wfr, wfl
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      real :: dx, siginterp, rtemp, pi
      integer :: k, j, ip, nn, nnoff, kr, kl, msid, istatus, 
ierr
      dimension istatus(lstat)
      parameter(pi = 3.1415926535897932384626433832795028) 
      

  siginterp = 0.25/(sigma*sigma) 
  

      if (.true.) then  ! zero edges
        
       if (.false.) then
        ! Broadcast left & right edges
        if (idproc.eq.0) then 
          wfl = wfcn(4,l,1)
        end if
        if (idproc.eq.(nvp-1)) then 
          wfr = wfcn(-1+nxp(nblok),l,nblok)
        end if
        
        call MPI_BCAST(wfl,1,mcplx,0,lgrp,ierr)
        call MPI_BCAST(wfr,1,mcplx,nvp-1,lgrp,ierr)
        
        ! subtract off to make it zero at edges
        wf = (wfl-wfr)/(nx-5)
        
        write (6,*) 'Left, right, slope', wfl, wfr, wf
        
        do k = 1, nblok
          nnoff = noff(k) - 4
          do j = 1, nxpmx
            wfcn(j,l,k) = wfcn(j,l,k) + (j + nnoff)*wf - wfl
          end do
        end do
        
       end if
       
       if (.false.) then
        if (idproc.eq.0) then 
          wfcn(1,l,1) = - wfcn(17,l,1) 
          wfcn(2,l,1) = - wfcn(16,l,1) 
          wfcn(3,l,1) = - wfcn(15,l,1) 
          wfcn(4,l,1) = - wfcn(14,l,1) 
          wfcn(5,l,1) = - wfcn(13,l,1) 
          wfcn(6,l,1) = - wfcn(12,l,1) 
          wfcn(7,l,1) = - wfcn(11,l,1) 
          wfcn(8,l,1) = - wfcn(10,l,1) 
          wfcn(9,l,1) = cmplx(0.,0.)
!          wfcn(2,l,1) = 3 * wfcn(5,l,1) - 8 * wfcn(4,l,1) ! 
cmplx(0.,0.)
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!          wfcn(3,l,1) = wfcn(5,l,1) - 3 * wfcn(4,l,1)    ! 
make first & second derivatives continuous
!          wfcn(4,l,1) = cmplx(0.,0.)
        end if
        if (idproc.eq.(nvp-1)) then 
!          wfcn(-1+nxp(nblok),l,nblok) = cmplx(0.,0.)
!          wfcn(0+nxp(nblok),l,nblok) = wfcn(nxp(nblok)-
2,l,nblok) - 3 * wfcn(nxp(nblok)-1,l,nblok)   ! make first & 
second derivatives continuous
!          wfcn(1+nxp(nblok),l,nblok) = 3 * wfcn(nxp(nblok)-
2,l,nblok) - 8 * wfcn(nxp(nblok)-1,l,nblok)   !cmplx(0.,0.)
          wfcn(-7+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-6+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
8,l,nblok) 
          wfcn(-5+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
9,l,nblok) 
          wfcn(-4+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
10,l,nblok) 
          wfcn(-3+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
11,l,nblok) 
          wfcn(-2+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
12,l,nblok) 
          wfcn(-1+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
13,l,nblok) 
          wfcn(0+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
14,l,nblok) 
          wfcn(1+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
15,l,nblok) 
          wfcn(2+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
16,l,nblok) 
          wfcn(3+nxp(nblok),l,nblok) = cmplx(0.,0.)
        end if
       end if
        
        if (idproc.eq.0) then 
          wfcn(1,l,1) = cmplx(0.,0.)
          wfcn(2,l,1) = cmplx(0.,0.)
          wfcn(3,l,1) = cmplx(0.,0.)
          wfcn(4,l,1) = cmplx(0.,0.)
         if (.true.) then
          wfcn(5,l,1) = cmplx(0.,0.)
          wfcn(6,l,1) = cmplx(0.,0.)
         if (.false.) then
          wfcn(7,l,1) = cmplx(0.,0.)
          wfcn(8,l,1) = cmplx(0.,0.)
          wfcn(9,l,1) = cmplx(0.,0.)
          wfcn(10,l,1) = cmplx(0.,0.)
!          wfcn(11,l,1) = cmplx(0.,0.)
         end if
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         end if
        end if
        if (idproc.eq.(nvp-1)) then 
         if (.true.) then
         if (.false.) then
!          wfcn(-7+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-6+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-5+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-4+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-3+nxp(nblok),l,nblok) = cmplx(0.,0.)
         end if
          wfcn(-2+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-1+nxp(nblok),l,nblok) = cmplx(0.,0.)
         end if
          wfcn(0+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(1+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(2+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(3+nxp(nblok),l,nblok) = cmplx(0.,0.)
        end if
      end if
        
      do k=1,nblok
!  copy wfcn to guard cells 

        kl = k + idproc - 1
        if (kl.lt.1) then 
           kl = kl + nvp
        end if
        
        kr = k + idproc + 1
        if (kr.gt.nvp) then 
          kr = kr - nvp
        end if
        
! for shared
!        wfcn(nxp(kl)+2,l,kl) = wfcn(2,l,k)
!        wfcn(nxp(kl)+3,l,kl) = wfcn(3,l,k)
!        wfcn(1,l,kr) = wfcn(nxp(k)+1,l,k)
! for mpi distributed
        call MPI_IRECV(wfcn(1,l,k),1,mcplx,kl-
1,0,lgrp,msid,ierr)
        call MPI_SEND(wfcn(nxp(k)+1,l,k),1,mcplx,kr-
1,0,lgrp,ierr)
        call MPI_WAIT(msid,istatus,ierr)
        
        call MPI_IRECV(wfcn(nxp(k)+2,l,k),2,mcplx,kr-
1,1,lgrp,msid,ierr)
        call MPI_SEND(wfcn(2,l,k),2,mcplx,kl-1,1,lgrp,ierr)
        call MPI_WAIT(msid,istatus,ierr)
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      end do
      
! Calculate initial wavefunction by particle  
      do k = 1, nblok
        
! Reinitialize to grid of trajectories; reuse variables
        npp(l,k) = npx/nvp           ! Num particles per 
block
        nn = nx/nvp - 1              ! Grids per block - 1
        nnoff = npx/nx                 ! Particles per space 
density
        do j = 0, nn                   ! Loop over position
          do ip = 1, nnoff             !  Loop over initial 
momentum
            part(1,j*nnoff+ip,k) = j + noff(k) 
            part(2,j*nnoff+ip,k) = vtx*(                              
&
    &          2.0*real(ip-0.5)/real(nnoff) - 1.0)
!!            part(2,j*nnoff+ip,k) = vtx*ranorm(0) 
          end do
        end do
       
       nnoff = noff(k) - 2
       do j = 1, npp(l,k)
! find interpolation weights for initial position
        nn = part(1,j,k) + .5
        dx = part(1,j,k) - float(nn)
        nn = nn - nnoff 
! Reset action
        part(3,j,k) = 0.0
!     wf =((.75 - dx*dx)*wfcn(nn,l,k) + 
.5*(wfcn(nn+1,l,k)*(.5 + dx)**2+&
!    &wfcn(nn-1,l,k)*(.5 - dx)**2)) * 
cmplx(cos(phase),sin(phase))*wmult 
! interpolate and save the wavefunction's ...
        wfl = wfcn(nn-1,l,k)
        wf = wfcn(nn,l,k)
        wfr = wfcn(nn+1,l,k)
        
! magnitude and ...
!      part(4,j,k) = ((.75 - dx*dx)*abs(wf) 
+.5*(abs(wfr)*(.5 + dx)**2 &
!     &     + abs(wfl)*(.5 - dx)**2))  
      if (.true.) then      ! dx.eq.0
        if (.true.) then
          
          if (.false.) then
        part(4,j,k) = abs(wf)               &
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     &   * exp(-0.5*( 
((((sigma*vscale*part(2,j,k)*divhbar)**2)**2)  &
     &                  **2) ) )    
          end if
          
          if (.true.) then
           if (.false.) then
! booster
             rtemp = abs(vscale*part(2,j,k)*divhbar)
             if (rtemp.gt.(1.0)) rtemp = 1.0
             wf = wf * ( rtemp * rtemp / ( 12 * 
((sin(rtemp/6))**2) *    &
     &                (1 + 2 * cos(rtemp/3)) ) )
           end if
! high p taper
           if (.true.) then
        rtemp = 2.5*(abs(vscale*part(2,j,k)*divhbar) - 2.5 )
        part(4,j,k) = abs(wf)               &
     &   / (1.0 + exp( 4*rtemp ) )
           end if
          end if 
          
          if (.false.) then
        part(4,j,k) = abs(wf)               &
     &   * exp(-0.5*((sigma*vscale*part(2,j,k)*divhbar)**2))    
&

 &   * (1 + 2*(bcoeff *cos(vscale*part(2,j,k)*divhbar) 
+ &

 &   ccoeff *cos(2*vscale*part(2,j,k)*divhbar) + &
 &   dcoeff *cos(3*vscale*part(2,j,k)*divhbar) ) ) 

!  &   * (1 - (exp(-0.5/(sigma*sigma))/(1 + exp(-
2.0/(sigma*sigma)))  &
!  &   * 2*cos(vscale*part(2,j,k)*divhbar)) ) 
          end if
        
          if (.false.) then
            rtemp = abs(vscale*part(2,j,k)*divhbar)
            if (rtemp.le.pi) then 
              part(4,j,k) = abs(wf) 
            else
              part(4,j,k) = abs(wf)*exp(6*(pi**2 - 
rtemp**2))  
            end if
          end if
        
! phase separately

      part(5,j,k) = atan2(aimag(wf),real(wf)) 
    else 

      part(4,j,k) = (exp(-siginterp*dx*dx)*abs(wf)    &
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 &    + abs(wfr)*exp(-siginterp*(dx - 1)**2)    &
     &    + abs(wfl)*exp(-siginterp*(1 + dx)**2) )             
&
     &   * exp(-0.5*((sigma*vscale*part(2,j,k)*divhbar)**2))
        if (wf.eq.0) then 
          wf = wfr + wfl
        end if
! phase separately
        wfr = wfr * conjg(wf)
        wfl = wfl * conjg(wf)
!        part(5,j,k) = atan2(aimag(wf),real(wf)) + &
!     &    (.5*(atan2(aimag(wfr),real(wfr))*(.5 + dx)**2 + &
!     &     atan2(aimag(wfl),real(wfl))*(.5 - dx)**2))
        part(5,j,k) = atan2(aimag(wf),real(wf)) + &
     &     atan2(aimag(wfr),real(wfr))*exp(-siginterp*(dx - 
1)**2) + &
     &     atan2(aimag(wfl),real(wfl))*exp(-siginterp*(1 + 
dx)**2)    

    end if 
!        wf = q * cmplx(cos(phase),sin(phase)) 
      end if
      

      part(6,j,k) = 1.0   ! det of step 0 
      part(7,j,k) = 0.0   ! det of "step -1" 
      part(8,j,k) = 0.0   ! unused (for now)

      
       end do
      end do

      end subroutine

Listing C.  Particle preparation routine.  

E. Particle Push

      subroutine 
ppush1(part,fx,npp,noff,qtm,dt,ek,idimp,npmax,nblok,   &
     &nxpmx,nx,l,nspecies,pt)
! for 1d code, this subroutine updates particle co-ordinate 
and velocity
! using leap-frog scheme in time and second-order spline 
interpolation
! in space, with periodic boundary conditions, for 
distributed data.
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! equations used are:
! v(t+dt/2) = v(t-dt/2) + (q/m)*fx(x(t))*dt, where q/m is 
charge/mass,
! and x(t+dt) = x(t) + v(t+dt/2)*dt
! fx(x(t)) is approximated by interpolation from the nearest 
grid points
! fx(x) = (.75-dx**2)*fx(n)+.5*(fx(n+1)*(.5+dx)**2+fx(n-
1)*(.5-dx)**2)
! where n = nearest grid point and dx = x-n
! part(1,n,l,k) = position x of particle n of species l in 
partition k
! part(2,n,l,k) = velocity vx of particle n of species l in 
partition k
! fx(j,k) = force/charge at grid point jj, that is 
convolution of
! electric field over particle shape, where jj = j + noff(k) 
- 1
! npp(l,k) = number of particles of species l in partition k
! noff(k) = leftmost global gridpoint in particle partition 
k.
! qtm = particle charge/mass ratio times dt
! dt = time interval between successive calculations
! kinetic energy/mass at time t is also calculated, using
! ek = .125*sum((v(t+dt/2)+v(t-dt/2))**2)
! idimp = size of phase space = 2
! npmax = maximum number of particles in each partition
! nblok = number of particle partitions.
! nxpmx = maximum size of particle partition, including 
guard cells.
! nx = size of space.
! scalar version with spatial decomposition
      implicit none
      integer :: 
idimp,npmax,nspecies,nblok,nxpmx,npp,noff,l,nx
      real :: sum1, work1, part, fx, pt, qtm, dt, ek
      dimension part(idimp,npmax,nblok)
!      dimension part(idimp,npmax,nspecies,nblok)
      dimension 
fx(nxpmx,nspecies,nblok),npp(nspecies,nblok),noff(nblok)
      dimension pt(nxpmx,nspecies,nblok)
      dimension sum1(1), work1(1)
      
      integer :: j,k, nn, nnoff
      real :: dx, ax, px, phase, oldposition
      real, parameter :: bounceposition = 1.5
      
      sum1(1) = ek*8. 
      do 20 k = 1, nblok
      nnoff = noff(k) - 2

198



      do 10 j = 1, npp(l,k)
      
      phase = 0.0 ! Initialize phase adjustment
      oldposition = part(1,j,k) ! store just in case
! find interpolation weights
      nn = part(1,j,k) + .5
      dx = part(1,j,k) - float(nn)
      nn = nn - nnoff
! find acceleration
      ax = (.75 - dx*dx)*fx(nn,l,k) + .5*(fx(nn+1,l,k)*(.5 + 
dx)**2 +   &
     &fx(nn-1,l,k)*(.5 - dx)**2)
      px = (.75 - dx*dx)*pt(nn,l,k) + .5*(pt(nn+1,l,k)*(.5 + 
dx)**2 +   &
     &pt(nn-1,l,k)*(.5 - dx)**2)
! new velocity
      dx = part(2,j,k) + qtm*ax
! average kinetic energy
      sum1(1) = sum1(1) + (part(2,j,k) + dx)**2
! action accumulate
!      part(3,j,k) = part(3,j,k) + .125*dt*(part(2,j,k) + 
dx)**2 - 
!     &qtm*px
      part(3,j,k) = part(3,j,k) + .5*dt*((dx)**2) - qtm*px
! new velocity 
      part(2,j,k) = dx
! new position
      part(1,j,k) = part(1,j,k) + dx*dt
      
      if (.true.) then
! check if beyond boundary & reflect 
      if (part(1,j,k).lt.(bounceposition)) then 
!        part(1,j,k) = (bounceposition)*2 - part(1,j,k)
        part(1,j,k) = oldposition
        if (part(2,j,k).lt.(0.0)) part(2,j,k) = - 
part(2,j,k)
!        phase = phase + 
3.1415926535897932384626433832795028
      else if (part(1,j,k).gt.(nx-bounceposition)) then 
!        part(1,j,k) = (nx-bounceposition)*2 - part(1,j,k)
        part(1,j,k) = oldposition
        if (part(2,j,k).gt.(0.0)) part(2,j,k) = - 
part(2,j,k)
!        phase = phase + 
3.1415926535897932384626433832795028
      end if 
      end if
      
! find interpolation weights
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      nn = part(1,j,k) + .5
      dx = part(1,j,k) - float(nn)
      nn = nn - nnoff
! push det's, using (∂t)^2 V'' / m = (dt/vscale)^2 
(qtm*(vscale**2)/dt)*pt'' / m = pt''*qtm*dt
      px = pt(nn+1,l,k) + pt(nn-1,l,k) - 2.0*pt(nn,l,k) 
      ax = part(7,j,k)
      part(7,j,k) = part(6,j,k)
      part(6,j,k) = (2.0 - px*qtm*dt) * part(7,j,k) - ax
! now to check for possible behavior of the det
      px = part(7,j,k)*part(6,j,k)
      if (px.lt.0) then    ! we have a zero crossing (sign 
flip) 
        phase = phase - 
3.1415926535897932384626433832795028*0.5
      else if (px.eq.0) then
        phase = phase - 
3.1415926535897932384626433832795028*0.25
      end if
      
! update phase with any changes
      part(5,j,k) = part(5,j,k) + phase
      
   10 continue
   20 continue

! this line is used for distributed memory mpi computers
      call psum(sum1,work1,1,1)
! normalize kinetic energy
      ek = .125*sum1(1)
      end subroutine

Listing D.  Particle push routine.  

F. Wavefunction Reconstruction/Particle Deposit

      subroutine 
wdeposit(wfcn,part,npp,noff,nxp,indx,l,divhbar,wmult,dt,  &
     
&div2sigsq,idimp,npmax,nblok,nvp,idproc,nxpmx,nspecies,vscal
e,      &
     &noffglob,nxpglob,kxp,kblok,mixup,sct,cxexpt)
! for 1d code, this subroutine distributes wavefunction 
density
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! using second-order spline interpolation, with periodic 
boundaries
! and distributed data.
! density is approximated by values at the nearest grid 
points
! q(n)=qm*(.75-dx**2), q(n+1)=.5*qm*(.5+dx)**2, q(n-
1)=.5*qm*(.5-dx)**2
! where n = nearest grid point and dx = x-n
! part(1,n,l,k) = position x of particle n of species l in 
partition k
! q(j,l,k) = species l density at grid point jj, where jj = 
j + noff(k)-1
! wfcn = given complex valued wavefunction; output returned 
here
! part = particle data
! npp(l,k) = number of particles of species l in partition k
! noff(k) = leftmost global gridpoint in particle partition 
k.
! noffglob(k) = leftmost global gridpoint in particle 
partition k (all partitions).
! divhbar = inverse of hbar
! idimp = size of phase space + action + old position
! npmax = maximum number of particles in each partition
! nblok = number of particle partitions.
! nxpmx = maximum size of particle partition, including 
guard cells.
! complex scalar version with spatial decomposition
      implicit none
! common block for parallel processing
      integer nproc, lgrp, lstat, mreal, mint, mcplx
! lstat = length of status array
      parameter(lstat=8)
! lgrp = current communicator
! mreal = default datatype for reals
      common /pparms/ nproc, lgrp, mreal, mint, mcplx
! get definition of MPI constants
      include 'mpif.h'
      
! Information needed for using the fft
      integer :: kxp, kblok, isign, kstrt, kfinish
      integer, dimension(kxp,kblok) :: mixup
      complex, dimension(kxp,kblok) :: sct
      integer :: kdep, kdeprange
      parameter (kdeprange = 64) 

      integer :: npp, noff, l, idimp, npmax, nblok, nxpmx
      integer :: indx, nx, nspecies, nvp, idproc
      real :: part, divhbar, vscale, div2sigsq
      complex, dimension(nxpmx,nspecies,nblok) :: wfcn
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      dimension part(idimp,npmax,nblok)
!      dimension part(idimp,npmax,nspecies,nblok)
      dimension npp(nspecies,nblok), noff(nblok)
      integer, dimension(nvp) :: noffglob
      integer, dimension(nvp) :: nxpglob
      integer, dimension(nblok) :: nxp
! I need the full space, even in dist. mem   
      complex, dimension(nxpmx, nvp, nblok) :: wtemp
      complex :: wmult, wf, ctemp, cincr
      real :: dx, dt, phase, pi, pdh, wavenn, rtemp
      integer :: k, j, kw, jw, nn, nnoff, kt, msid, istatus, 
ierr, itemp
      dimension istatus(lstat)
      parameter ( pi = 3.1415926535897932384626433832795028 
)
      
      complex, dimension(kxp, nvp, kblok) :: wktemp 
      complex, dimension(kxp, kblok) :: f, g 
      integer, dimension(nvp) :: blocklengths
      logical, parameter :: doPdeposit = .false.
      
      logical, parameter :: usecxexpt = .false.
      integer, parameter :: cxexpsize = 1024
      complex, dimension(cxexpsize+1+cxexpsize+1) :: cxexpt
      
      nx = 2**indx
      
!      print *, indx, nx, kxp, kblok
      
       if (.not.doPdeposit) then ! write wave 
!Set wtemp to zero
      do k=1,nblok
       do kw=1,nvp
        do j=1,nxpmx
          wtemp(j,kw,k) = 0.0
        end do
       end do
      end do

        if (usecxexpt) then
         if (real(cxexpt(1)).lt.0) then 
           ! needs initialization
           do j=0,cxexpsize+1
             cxexpt(j) = cmplx(cos((j-
1)*pi/cxexpsize),sin((j-1)*pi/cxexpsize)) 
             cxexpt(j+cxexpsize+1) = cmplx(cos((j-
1)*2*pi/(cxexpsize*cxexpsize)),sin((j-
1)*2*pi/(cxexpsize*cxexpsize))) 
           end do

202



         end if
        end if
         
       else ! using p deposit
!Set wktemp to zero
      do k=1,kblok
       do kw=1,nvp
        do j=1,kxp
          wktemp(j,kw,k) = 0.0
        end do
       end do
      end do
      
       end if

      
! Deposit by particle path 
      do k = 1, nblok
       nnoff = noff(k) - 2
      do j = 1, npp(l,k)

! p final divided by hbar
        pdh = vscale*part(2,j,k)*divhbar
!        if (.false.) then 
!        if (part(2,j,l,k).lt.0.0) then 
!          pdh = vscale*(2.0 - part(2,j,l,k))*divhbar
!        end if
!        else 
        if (doPdeposit) then ! for p deposit (or equiv)
! find interpolation weights for final momentum, & adjust 
for negative values
          dx =  pdh * (nx/(2*pi)) + 2*nx
          nn = dx + .5 
          dx =  dx - float(nn)
          nn = nn - 2*nx
!          pdh = nn * (2*pi/nx)
        end if
        
!       Total phase =  Action/hbar   + atan2(original psi)
        phase = vscale * part(3,j,k) * divhbar + part(5,j,k) 
! Vaslov factors et al to be accounted for elsewhere

! Additional phase:   - pfinal * xend / hbar
        phase = phase - pdh * part(1,j,k)

! Read initial wf out of particle memory & multiply 
!   mechanism for getting contribution to final psi
!        wf = wmult * part(4,j,l,k) * 
cmplx(cos(phase),sin(phase)) 
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!        wf = wmult * part(4,j,l,k)     ! w/o determinant 
factor
        if (abs(part(6,j,k)).gt.0.00001) then 
          wf = wmult * part(4,j,k) / sqrt(abs(part(6,j,k)-
part(7,j,k)))  ! w/ det factor
        end if
        
! Now we distribute into the next wavefunction 

! Information from one particle is distributed to enitre 
wavefunction, but with phase shift
       if (.not.doPdeposit) then
        do kw=1,nvp
         nnoff = noffglob(kw) - 2
!         nnoff = ((kw-1)*nx)/nvp - 2 
         if (.true.) then
           
             ctemp = wf * &
     &  cmplx(cos(phase + pdh * ( nnoff + 1 ) ), &
     &        sin(phase + pdh * ( nnoff + 1 ) ) ) 
           cincr = cmplx( cos(pdh), sin(pdh) )
           do jw=1,nxpmx     !  2,nxpglob(kw)+1
         
             wtemp(jw,kw,k) = wtemp(jw,kw,k) + ctemp
             
             ctemp = ctemp * cincr
           end do
         
         else 
         do jw=1,nxpmx     !  2,nxpglob(kw)+1
           itemp = nnoff + jw
!           if (itemp.ge.112) itemp = itemp - nx 

           if (usecxexpt) then 
             rtemp = (phase + pdh * ( itemp ) ) * (0.5/pi) 
             itemp = rtemp + 0.5
             if ( (rtemp+0.5).lt.0) itemp = itemp - 1
             rtemp = rtemp - float(itemp) 
             
             ! -0.5 <= rtemp < 0.5 
             
             itemp = (2*cxexpsize)*abs(rtemp)
             ctemp = cxexpt(itemp+1)
             if (rtemp.lt.0) then 
               ctemp = wf * conjg(ctemp)
             else 
               ctemp = wf * ctemp
             end if
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           else 
           ctemp = wf * &
     &  cmplx(cos(phase + pdh * ( itemp ) ), &
     &        sin(phase + pdh * ( itemp ) ) ) 
           end if
           
           wtemp(jw,kw,k) = wtemp(jw,kw,k) + ctemp
         end do
         
         end if
        end do

       else ! Assuming p space
         
!        wavenn = (2*pi/nx) * nn
        if ((nn.lt.(nx/2)).and.(nn.ge.(-nx/2))) then 
          if (abs(dx).lt.(0.00001)) then 
            ctemp = 1.0 
          else 
            ctemp = sin(pi*dx)/(pi*dx)
          end if 
          ctemp = ctemp * wf * &
     &       cmplx(cos(phase + pi*dx),sin(phase + pi*dx)) 
        
          jw = nn
          if (nn.lt.0) jw = jw + nx 
          kw = jw/kxp 
          jw = 1 + jw - kxp*kw
!         if ((jw.gt.0).and.(jw.le.kxp)) then 
          wktemp(jw, 1+kw, k) = wktemp(jw, 1+kw, k) + ctemp
!         else 
!          print *, jw, kw
!         end if
        end if
        
        !equiv of
!        do kw=1,nvp
!         nnoff = noffglob(kw) - 2
!         do jw=2,nxpglob(kw)+1
!           wf = ctemp * &
!     &  cmplx(cos(wavenn * ( nnoff + jw ) ), &
!     &        sin(wavenn * ( nnoff + jw ) ) ) 
!           wtemp(jw,kw,k) = wtemp(jw,kw,k) + wf
!         end do
!        end do
       
! higher p's
!        wavenn = (2*pi/nx)*(nn+1)
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        kstrt = 1
        kfinish = kdeprange
        if ((nn+kstrt).lt.(-nx/2)) kstrt = - (nx/2) - nn 
        if ((nn+kfinish).ge.(nx/2)) kfinish = (nx/2) - nn - 
1
        do kdep = kstrt, kfinish
          jw = nn + kdep
!          if ((jw.lt.(nx/2)).and.(jw.ge.(-nx/2))) then 
            ctemp = sin(pi*(dx-kdep))/(pi*(dx-kdep)) * wf  &
     & * cmplx(cos(phase + pi*(dx-kdep)),sin(phase + pi*(dx-
kdep))) 
            
            if (jw.lt.0) jw = jw + nx
            kw = jw/kxp 
            jw = 1 + jw - kxp*kw
!           if ((jw.gt.0).and.(jw.le.kxp)) then 
            wktemp(jw, 1+kw, k) = wktemp(jw, 1+kw, k) + 
ctemp
!           else 
!            print *, jw, kw
!           end if
!          end if
        end do
       
! lower p's
!        wavenn = (2*pi/nx)*(nn-1)
        kstrt = 1
        kfinish = kdeprange
        if ((nn-kstrt).ge.(nx/2)) kstrt = 1 - (nx/2) + nn 
        if ((nn-kfinish).lt.(-nx/2)) kfinish = (nx/2) + nn 
        do kdep = kstrt, kfinish
          jw = nn - kdep
!          if ((jw.lt.(nx/2)).and.(jw.ge.(-nx/2))) then 
            ctemp = wf * sin(pi*(dx+kdep))/(pi*(dx+kdep)) *  
&
     & cmplx(cos(phase + pi*(dx+kdep)),sin(phase + 
pi*(dx+kdep))) 
            
            if (jw.lt.0) jw = jw + nx
            kw = jw/kxp 
            jw = 1 + jw - kxp*kw
!           if ((jw.gt.0).and.(jw.le.kxp)) then 
            wktemp(jw, 1+kw, k) = wktemp(jw, 1+kw, k) + 
ctemp
!           else 
!            print *, jw, kw
!           end if
!          end if
        end do
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       end if 

      end do
      end do

!copy wtemp pieces to wfcn (note: no guard cells are 
necessary)
       if (.false.) then
!  for shared memory
      do k=1,nblok
        
        do j=1,nxpmx
          wfcn(j,l,k) = wtemp(j,k,k)
        end do
        
      end do
        
      do k=1,nblok

        do kw=1,nvp
          if (kw.ne.k) then 
           do j=1,nxpmx
             wfcn(j,l,kw) = wfcn(j,l,kw) + wtemp(j,kw,k)
           end do
          end if
        end do
        
      end do
       end if
      
       if (.not.doPdeposit) then
!  for distributed mpi 
         if (.false.) then
! (Same as MPI_REDUCE_SCATTER, but that's not in MacMPI as 
of 980722)
      do k=1,nblok
        ! copy to self
        do j=1,nxpmx
          wfcn(j,l,k) = wtemp(j,k+idproc,k)
        end do
        
      end do
      ! Now there's room to play with in wtemp
      
      do k=1,nblok

        do kw=1,nvp-1
          kt = k + idproc - kw 
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          if (kt.lt.1) kt = kt + nvp
   ! recieve into the freed up block
          call MPI_IRECV(wtemp(1,k+idproc,k),nxpmx,mcplx,kt-
1,kw,lgrp,msid,ierr)
          kt = k + idproc + kw 
          if (kt.gt.nvp) kt = kt - nvp
   ! send data to the one who needs it 
          call MPI_SEND(wtemp(1,kt,k),nxpmx,mcplx,kt-
1,kw,lgrp,ierr)
          call MPI_WAIT(msid,istatus,ierr)
         
           do j=1,nxpmx
             wfcn(j,l,k) = wfcn(j,l,k) + wtemp(j,k+idproc,k)
           end do
           
        end do
        
      end do
         else 
         
           do kw = 1, nvp
             blocklengths(kw) = nxpmx
           end do
           call MPI_REDUCE_SCATTER(wtemp(:,:,1), 
wfcn(:,l,1), &
     &             blocklengths, mcplx, MPI_SUM, lgrp, ierr)
       
         end if
       end if
      
       if (doPdeposit) then ! p deposit
!  for distributed mpi 

       if (.false.) then 
! (Same as MPI_REDUCE_SCATTER, but that's not in MacMPI as 
of 980729)

!      print *, 'summing into f'
      do k=1,kblok
        ! copy to self
        do j=1,kxp
          f(j,k) = wktemp(j,k+idproc,k)
        end do
        
      end do
      ! There's room to play with in wktemp
      
      do k=1,kblok

208



        do kw=1,nvp-1
          kt = k + idproc - kw 
          if (kt.lt.1) kt = kt + nvp
   ! recieve into the freed up block   wktemp(1,k+idproc,k)
          call MPI_IRECV(g(1,k),kxp,mcplx,kt-
1,kw,lgrp,msid,ierr)
          kt = k + idproc + kw 
          if (kt.gt.nvp) kt = kt - nvp
   ! send data to the one who needs it 
          call MPI_SEND(wktemp(1,kt,k),kxp,mcplx,kt-
1,kw,lgrp,ierr)
          call MPI_WAIT(msid,istatus,ierr)
         
           do j = 1, kxp
             f(j,k) = f(j,k) + g(j,k)
!             wktemp(j,k+idproc,k) = wktemp(j,k+idproc,k) + 
wk2temp(j,k+idproc,k)
           end do
           
        end do
        
      end do
       else 
       
       do kw = 1, nvp
         blocklengths(kw) = kxp
       end do
      call MPI_REDUCE_SCATTER(wktemp, f, blocklengths, 
mcplx, MPI_SUM, lgrp, ierr)
       
       end if
      
!      print *, 'Initializing FFT'
      
!      isign = 0
      kstrt = 1+idproc
!      call pfft1c(f,g,isign,mixup,sct,indx,kstrt,kxp,kblok)
!      print *, kxp, kblok
!      print *, mixup
!      print *, sct
      print *, 'Deposit: Calling FFT'
      isign = 1
      call pfft1c(f,g,isign,mixup,sct,indx,kstrt,kxp,kblok)
      
      do k = 1, kblok
        wfcn(1,l,k) = 0
        do j = 1, kxp
!          if (.false.) then !(j-(j/2)*2).ne.0) then      ! 
I'd love a "if (j&1)" right here
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!            wfcn(j+1,l,k) = - f(j,k) 
!          else
            wfcn(j+1,l,k) = f(j,k) 
!          end if
        end do
        do j = kxp+2, nxpmx
          wfcn(j,l,k) = 0
        end do
      end do 
      
       end if
      
      
      if (.false.) then  ! make sure wfcn periodic by adding 
the right a*(x-(nx/2)) 
         
       if (.false.) then ! shared memory
         ctemp = ( wfcn(2,l,1) - wfcn(1+nxp(nblok),l,nblok) 
) / (nx - 1) 
       end if
       
       if (.true.) then ! distributed mpi 
         
         if (idproc.eq.0) then ! recieve last w
           call MPI_IRECV(wtemp(2,1,1),1,mcplx,nvp-
1,nvp,lgrp,msid,ierr)
         end if
         if (idproc.eq.(nvp-1)) then ! send last w
           call 
MPI_SEND(wfcn(1+nxp(nblok),l,nblok),1,mcplx,0,nvp,lgrp,ierr)
         end if
         
         if (idproc.eq.0) then 
           call MPI_WAIT(msid,istatus,ierr)
           ctemp = ( wfcn(2,l,1) - wtemp(2,1,1) ) / (nx - 1) 
! calculate coefficient and tell it to everyone else
           do k = 2, nvp
             call MPI_SEND(ctemp,1,mcplx,k-1,0,lgrp,ierr)
           end do
         else 
! get coefficient from proc 0
           call MPI_IRECV(ctemp,1,mcplx,0,0,lgrp,msid,ierr)
           call MPI_WAIT(msid,istatus,ierr)
         end if 
         
       end if
       
       do k = 1, nblok
         dx = noff(k) - 2 - 0.5*nx
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         do j = 2, nxp(k)+1
           wfcn(j,l,k) = wfcn(j,l,k) + ctemp * (j + dx)
         end do
       
       end do 
       
      end if
      
      if (.true.) then  ! zero edges
        
        if (idproc.eq.0) then 
          wfcn(1,l,1) = cmplx(0.,0.)
          wfcn(2,l,1) = cmplx(0.,0.)
          wfcn(3,l,1) = cmplx(0.,0.)
          wfcn(4,l,1) = cmplx(0.,0.)
         if (.true.) then
          wfcn(5,l,1) = cmplx(0.,0.)
          wfcn(6,l,1) = cmplx(0.,0.)
         if (.false.) then
          wfcn(7,l,1) = cmplx(0.,0.)
          wfcn(8,l,1) = cmplx(0.,0.)
          wfcn(9,l,1) = cmplx(0.,0.)
          wfcn(10,l,1) = cmplx(0.,0.)
!          wfcn(11,l,1) = cmplx(0.,0.)
         end if
         end if
        end if
        if (idproc.eq.(nvp-1)) then 
         if (.true.) then
         if (.false.) then
!          wfcn(-7+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-6+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-5+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-4+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-3+nxp(nblok),l,nblok) = cmplx(0.,0.)
         end if
          wfcn(-2+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(-1+nxp(nblok),l,nblok) = cmplx(0.,0.)
         end if
          wfcn(0+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(1+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(2+nxp(nblok),l,nblok) = cmplx(0.,0.)
          wfcn(3+nxp(nblok),l,nblok) = cmplx(0.,0.)
        end if
        
      end if
        
      end subroutine

211



Listing E.  Wavefunction reconstruction/virtual classical particle deposit 

routine.  
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X. Appendix C 

- The source code for the visualization and the 

quantum data formats 

A. Visualization

The following list codes used to visualize the output of the quantum PIC 

code.  These listings are in C.  

#define ColorReferenceVal 0xC000L //=0.75*0x10000
/* =0.75*65536=0x0.C*0x10000
This describes the brightness of the pixel */

Handle phaseColorHandle=nil; 
long *phaseColorArray=nil; 
long Complex2PhaseColor(Complex *in, long *outPhaseOnlyColor, myReal 
*magSqOut); 
//Converts a Complex number into a phase color representation, 
compacted into 0x00rrggbb
long Complex2PhaseColor(Complex *in, long *outPhaseOnlyColor, myReal 
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*magSqOut)
{long out=0; 
if (!phaseColorHandle) { long tli; 

phaseColorHandle=NewHandle(514L<<2); //Allocating room for 
514 longs

MoveHHi(phaseColorHandle); HLock(phaseColorHandle); 
phaseColorArray=(long*)*phaseColorHandle; 
for(tli=514; tli--; ) {

HSVColor tHSV={0,MaxSmallFract,MaxSmallFract}; 
RGBColor tRGB; 
tHSV.hue=MaxSmallFract*((tli<256)?tli+256:tli-

256)>>9; 
HSV2RGB(&tHSV,&tRGB); 
phaseColorArray[tli]=((long)tRGB.red&0xff00)<<8

| ((long)tRGB.green&0xff00)
| ((long)tRGB.blue)>>8; 

}
phaseColorArray+=256; 
}

if (phaseColorHandle) {
myReal magSq=in->a*in->a; 
myReal p=CPhase((*in))*invPi; //Convert [-π,π] to [-1,1]
long tli, br; 
magSq+=in->b*in->b; 
tli=p*256; 
br=magSq*ColorReferenceVal; 
out=phaseColorArray[tli]; 
if (magSqOut) *magSqOut=magSq; 
if (outPhaseOnlyColor) *outPhaseOnlyColor=out; 

tli=br*((Byte*)&out)[1]; 
((Byte*)&out)[1]=(tli&0xff000000)?0xff:(tli>>16); 
tli=br*((Byte*)&out)[2]; 
((Byte*)&out)[2]=(tli&0xff000000)?0xff:(tli>>16); 
tli=br*((Byte*)&out)[3]; 
((Byte*)&out)[3]=(tli&0xff000000)?0xff:(tli>>16); 

}

return out; 
}

void DrawPhaseCircle(short left, short top)
{ long tx,ty; Complex tC; RGBColor tRGB; myReal tr; long 

tli; 
tr=0.9*PhaseCircleRadius; tr=1/tr; 
for(ty=0; ty<(PhaseCircleRadius<<1); ty++) 

for(tx=0; tx<(PhaseCircleRadius<<1); tx++)
if ((tx-PhaseCircleRadius)*(tx-

PhaseCircleRadius)+(ty-PhaseCircleRadius)*(ty-
PhaseCircleRadius)<PhaseCircleRadius*PhaseCircleRadius) {

tC.a=tr*(tx-PhaseCircleRadius); 
tC.b=tr*(PhaseCircleRadius-ty); //Because up 

is the negative y direction in graphics
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//ComplexSq2RGB(&tC, &tRGB, nil, true); 
tli=Complex2PhaseColor(&tC, nil, nil); 
tRGB.red=0xff00&(tli>>8); 
tRGB.green=0xff00&(tli); 
tRGB.blue=(0xff&tli)<<8; 
RGBForeColor(&tRGB); 
MoveTo(tx+left,ty+top); Line(0,0); 
}

}

void DisplayWavefcn(Complex *wf, long sizeX, long bandOffset, long 
bandSize, long flags)

{ long baseAddr=(long)(*mainGWPM)->baseAddr, 
rowBytes=0x3fff&(long)(*mainGWPM)->rowBytes, 

tx,ty;//, sizeX=1<<lgArenaSizeX; 
long tmpTC=TickCount(), lastheight=DisplayHeight-1; 
Rect tRect={0,0, DisplayHeight, 1<<lgArenaSizeX}; 
RGBColor tRGB={0,0,0}; 
tRect.right=sizeX; 

ForeColor(whiteColor); BackColor(blackColor); 
if (!(flags&DontErase)) EraseRect(&tRect); 

for(tx=sizeX; tx--; ) {
long colorPhaseMag, colorPhase; 
myReal magSq; 

ForeColor(whiteColor); MoveTo(tx, DisplayHeight-1); 
Line(0,0); 

/*ComplexSq2RGB(wfptr+tx, &tRGB, nil, true); //or 
&wfptr[tx] pg 99 of K&R

tp[tx]=((long)tRGB.red&0xff00)<<8
| ((long)tRGB.green&0xff00)
| ((long)tRGB.blue)>>8; */

{Complex tC=wf[tx]; 
// CScalar(tC, tC, 4); 

colorPhaseMag=Complex2PhaseColor(&tC/*wf+tx*/, 
&colorPhase, &magSq); 

}
if (flags&PlotWhite) magSq=wf[tx].a; 
else if (flags&DontDrawBand) magSq=wf[tx].a+wf[tx].b; 
else {

long tli; 
#define cmultiplier 8

tli=cmultiplier*((colorPhaseMag&0xff0000)>>16); 
tRGB.red=tli>0x00ffL?0xffffL:0x0101L*tli; 
tli=cmultiplier*((colorPhaseMag&0xff00)>>8); 
tRGB.green=tli>0x00ffL?0xffffL:0x0101L*tli; 
tli=cmultiplier*(colorPhaseMag&0xff); 
tRGB.blue=tli>0x00ffL?0xffffL:0x0101L*tli; 

#undef cmultiplier
/* tRGB.red=0x0101L*((colorPhaseMag&0xff0000)>>16); //0x0101L

tRGB.green=0x0101L*((colorPhaseMag&0xff00)>>8);
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tRGB.blue=0x0101L*(colorPhaseMag&0xff);*/
if (!(flags&PlotWhite)) RGBForeColor(&tRGB); 
MoveTo(tx, DisplayHeight-bandSize-1+bandOffset); 

Line(0,bandSize); 
}

tRGB.red=0x0101L*((colorPhase&0xff0000)>>16); 
tRGB.green=0x0101L*((colorPhase&0xff00)>>8);
tRGB.blue=0x0101L*(colorPhase&0xff);
if (!(flags&PlotWhite)) RGBForeColor(&tRGB); 
if (flags&ConnectDots) {

MoveTo(tx+1, lastheight); 
LineTo(tx, 

lastheight=(flags&DontDrawBand?bandOffset:DisplayHeight-1)-
magSq*DisplayHeight); 

}
else {

MoveTo(tx, 
lastheight=(flags&DontDrawBand?bandOffset:DisplayHeight-1)-
magSq*DisplayHeight); Line(0,0); //  *0.75

}
}

tmpTC=TickCount()-tmpTC; 

tmpTC=0x03303030+(tmpTC%10)+(((tmpTC/10)%10)<<8)+(((tmpTC/100)%10)<<16
); 

//MoveTo(mainGWRect.right, 16); ForeColor(whiteColor); 
DrawString((StringPtr)&tmpTC); 

}

Listing F.  Code used to visualize the data from the quantum PIC code.  

B. Quantum Correlation Analysis, Eigenstate Extraction, and Data Reader

Most of the correlation analysis of the quantum was a custom-built 

parallel code, with its own ability to read binary data files output by the 

quantum PIC code.  This listing is in C.  These routines are presented together 

because of their interdependence.  
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void TransposeInMNOutData(long *inP, long *outP, long lgElemSize /*in 
longs*/, long M, long N); 
void TransposeInMNOutData(long *inP, long *outP, long lgElemSize /*in 
longs*/, long M, long N)

{/* Transpose a M elements/row, N row matrix in inP to outP */
if (inP) if (outP) 
if (lgElemSize>=0) 
if (M>=1) 
if (N>=1) {

long j=N; 

while (j--) {
long i=M; 

while (i--) {
long k=1L<<lgElemSize; 
while (k--) {

long 
tli=inP[k+(i<<lgElemSize)+(j*M<<lgElemSize)]; 

outP[k+(j<<lgElemSize)+(i*N<<lgElemSize)]=tli; 
}

}

}

}

}

void TransposeSquareData(long *inP, long elemSize /*in longs*/, long 
M); 
void TransposeSquareData(long *inP, long elemSize /*in longs*/, long 
M)

{
if (inP) 
if (elemSize>0) 
if (M>1) {

long j=M; 

while (--j) {
long i=j; 

while (i--) {
long k=elemSize; 

// printf("Swapping: (%d,%d)\n", i, j); 
while (k--) {

long tli=inP[k+i*elemSize+j*M*elemSize]; 
long 

tli2=inP[k+j*elemSize+i*M*elemSize];  
inP[k+j*elemSize+i*M*elemSize]=tli; 
inP[k+i*elemSize+j*M*elemSize]=tli2;  
}
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}

}

}

}

#define Dim 10
void TestTransposers()

{
long array[Dim][Dim]; 
long array2[Dim*Dim]; 
printf("Testing Square Transposer\n"); 

{long j, count=0; 
for(j=0; j<Dim; j++) 

{long i; 
for(i=0; i<Dim; i++) {

array[j][i]=count++; 
printf("%6d", array[j][i]); 
}

printf("\n"); 
}

}

TransposeSquareData((long*)array, 1, Dim); 

{long j; 
for(j=0; j<Dim; j++) 

{long i; 
for(i=0; i<Dim; i++) {

printf("%6d", array[j][i]); 
}

printf("\n"); 
}

}

printf("Testing Regular Transposer\n"); 

TransposeInMNOutData((long*)array, array2, 0, Dim, Dim-2); 

{long j; 
for(j=0; j<Dim; j++) 

{long i; 
for(i=0; i<Dim-2; i++) {

printf("%6d", array2[j*(Dim-2)+i]); 
}

printf("\n"); 
}

}
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}

BabyQFileInfoStruct bfi[MaxBabyQFiles]; 

short CheckIndexOkay(short in); 
short CheckIndexOkay(short in)

{short out=0; 
if ((in>0)&&(in<=MaxBabyQFiles)) 

if (bfi[in].status) 
out=1; 

return out; 
}

long GetNumQ(short in); 
long GetNumQ(short in)

{long out=0; 
if (CheckIndexOkay(in)) 

out=bfi[in].numQ; 
return out; 
}

long GetNumSteps(short in); 
long GetNumSteps(short in)

{long out=0; 
if (CheckIndexOkay(in)) 

out=bfi[in].numSteps; 
return out; 
}

void DisposeBabyQDH(short in); 
void DisposeBabyQDH(short in)

{
if (CheckIndexOkay(in)) 

if (bfi[in].dataHandle) {
HUnlock(bfi[in].dataHandle); 
DisposeHandle(bfi[in].dataHandle); 
bfi[in].dataHandle=nil; 
bfi[in].dataP=nil; 
bfi[in].dataMode=0; 
bfi[in].dataMemSize=0; 
}

}

void CloseBabyQBinFile(short in, long idproc, long nproc)
{//Close file and release related memory
if (bfi[in].status) {

bfi[in].status=0; 
DisposeBabyQDH(in); 

if (!idproc) 
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fclose(bfi[in].fp); 
bfi[in].fp=nil; 

{long i=sizeof(BabyQFileInfoStruct)>>2; 
while (i--) ((long*)&bfi[in])[i]=0; 
}

}
}

 
short OpenBabyQBinFile(const char *inFileName, long idproc, long 
nproc) 

{short out=0; 
if (!idproc) 

if (inFileName) {
{long i; 
for(i=1; (i<=MaxBabyQFiles)&&!out; i++) 

if (!bfi[i].status) out=i; 
}
if (out) {

printf("Opening…"); 
/* if (noErr==FSpOpenDF(inFS, fsRdPerm, 
&bfi[out].fref)) */

bfi[out].fp=fopen(inFileName, "rb"); 
if (bfi[out].fp) {

BabyQBinaryHeaderStruct header; 
long byteCount; 
short validHeader=0; OSErr err; 

// GetEOF(bfi[out].fref, &bfi[out].fileSize); 
fseek(bfi[out].fp, 0, SEEK_END); 
bfi[out].fileSize=ftell(bfi[out].fp); 

// SetFPos(bfi[out].fref, fsFromStart, 
bfi[out].currentPosition=0); 

fseek(bfi[out].fp, bfi[out].currentPosition=0, 
SEEK_SET); 

bfi[out].status=1; 

byteCount=sizeof(BabyQBinaryHeaderStruct); 
printf("Reading Header…"); 

// err=FSRead(bfi[out].fref, &byteCount, 
&header); //Read header

byteCount=fread(&header, 1L, byteCount, 
bfi[out].fp); //Read header

if (bfi[out].fileSize>64)
if (byteCount>=32) 
if (!~(header.negVersion|0x0000ffffL)) {//top 

16 bits are all 1's
if 

((sizeof(float)==header.floatSize)||(sizeof(double)==header.floatSize)
) 

if (header.dataOffset>=24) {
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bfi[out].currentPosition+=header.dataOffset; 
// SetFPos(bfi[out].fref, 

fsFromStart, bfi[out].currentPosition); 
fseek(bfi[out].fp, 

bfi[out].currentPosition=0, SEEK_SET); 
validHeader=1; 
}

}
else 

/*validHeader=EnterManualHeader(&header)?1:0*/; 

if (validHeader) {
#define Xfer(e) bfi[out].e=header.e

Xfer(dataOffset); 
Xfer(floatSize); 
Xfer(numSteps); 
Xfer(numQ); 
Xfer(sizeX); 
Xfer(nvp); 
Xfer(numPreGridCells); 
Xfer(numPostGridCells); 

#undef Xfer

bfi[out].dataFrameSize=bfi[out].floatSize*2*bfi[out].sizeX

+bfi[out].nvp*(bfi[out].numPreGridCells+bfi[out].numPostGridCells); 

bfi[out].timeFrameSize=bfi[out].dataFrameSize*bfi[out].numQ; 

//Readjust numSteps in case the file size is 
short

{unsigned long altNumSteps=(bfi[out].fileSize-
bfi[out].dataOffset)/

(bfi[out].timeFrameSize); 
if (altNumSteps<bfi[out].numSteps) 

bfi[out].numSteps=altNumSteps; 
}
//Readjust numSteps to power of 2
{unsigned long lgNumSteps, altNumSteps; 
for(lgNumSteps=14/*/30/**/; 

bfi[out].numSteps<(1L<<lgNumSteps); lgNumSteps--) ;

altNumSteps=1L<<lgNumSteps; 
if (altNumSteps<bfi[out].numSteps) 

bfi[out].numSteps=altNumSteps; 
}

bfi[out].fileSize=bfi[out].dataOffset+bfi[out].numSteps*
(bfi[out].timeFrameSize); 

}
else {
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printf("Incorrect data format.\n"); 
 CloseBabyQBinFile(out, idproc, nproc); 

out=0; 
}

}
else out=0; 
}

}
MPI_Bcast(&out, 1, MPI_INT, 0, MPI_COMM_WORLD); 
MPI_Bcast(&bfi[out], sizeof(BabyQFileInfoStruct), MPI_BYTE, 0, 

MPI_COMM_WORLD); 
return out; 
}

inline long StartIndex(long idproc, long nproc, long ySize);
inline long StartIndex(long idproc, long nproc, long ySize)

{
return (nproc?((ySize)*idproc/nproc):idproc?(ySize):0); 
}

//#define StartIndex(idproc, nproc, ySize)
(nproc?((long)(ySize)*idproc/nproc):idproc?(ySize):0)

inline long NumIndicies(long idproc, long nproc, long ySize);
inline long NumIndicies(long idproc, long nproc, long ySize)

{
return (StartIndex(idproc+1, nproc, ySize)

-StartIndex(idproc, nproc, ySize)); 
}

short LoadAllBabyQData(short in, long idproc, long nproc)
{short out=0; 
if (CheckIndexOkay(in)) {

long maxIndex, elemSize, storageAreaBytes, 
processAreaBytes, 

swapSpaceBytes, mpiInfoBytes, requestedBytes; 
DisposeBabyQDH(in); 

maxIndex=bfi[in].dataFrameSize/(elemSize=2*bfi[in].floatSize); 

storageAreaBytes=elemSize*bfi[in].numQ*

bfi[in].numSteps*(NumIndicies(idproc, nproc, maxIndex)); 

processAreaBytes=max(sizeof(Complex)*2,elemSize*bfi[in].numQ)*

bfi[in].numSteps*(NumIndicies(idproc, nproc, maxIndex)); 

swapSpaceBytes=idproc?(1L<<21):(nproc<<21); //Try two megs per node
if (swapSpaceBytes>(64L<<20)) 

swapSpaceBytes=64L<<20; //but no 
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more than 64 megs
//Round down

swapSpaceBytes=(swapSpaceBytes/bfi[in].timeFrameSize)*bfi[in].timeFram
eSize; 

mpiInfoBytes=(sizeof(MPI_Request)+sizeof(long))*nproc; 

bfi[in].dataHandle=NewHandle(requestedBytes=storageAreaBytes

+max(processAreaBytes,swapSpaceBytes)
+mpiInfoBytes); 

if (bfi[in].dataHandle) {
MoveHHi(bfi[in].dataHandle); 
HLock(bfi[in].dataHandle); 

bfi[in].dataP=(Byte*)*bfi[in].dataHandle; //Get pointer
{long *tp=(long*)bfi[in].dataP, 

i=requestedBytes>>2; 
while(i--) tp[i]=0; } //Clear 

memory

out=1; 
}

else 
out=0; /*printf("Low memory 

mode…\n")*/ 

if (idproc) {
long info[2]; 
info[0]=out; 
info[1]=requestedBytes; 
MPI_Send(info, 2, MPI_INT, 0, 

idproc, MPI_COMM_WORLD); 
}

else {
long i; 

for(i=nproc; i--; ) 
if (i) {

long info[2]; 
MPI_Status stat; 
MPI_Recv(info, 2, 

MPI_INT, i, i, MPI_COMM_WORLD, &stat); 
if (!info[0]) {

out=0; 
printf("Node #%d 

unable to allocate %d bytes.\n", i, info[1]); 
}

}
else {

if (!bfi[in].dataP) {
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out=0; 
printf("Node #0 

unable to allocate %d bytes.\n", requestedBytes); 
}

}

}

MPI_Bcast(&out, 1, MPI_INT, 0, 
MPI_COMM_WORLD); 

if (out) {
//Proceed to read all data into 

the cluster

if (idproc) {
long 

recvAreaBytes=((requestedBytes-storageAreaBytes-mpiInfoBytes))&~7; 
Byte *procP=bfi[in].dataP; 
Byte 

*recvP=procP+storageAreaBytes; 
MPI_Request 

*mpiInfo=(MPI_Request *)(recvP+recvAreaBytes); 
long *mpiDoneFlags=(long 

*)(mpiInfo+nproc); 
long totalStepsRead=0; 
long lgElemSize=0; 
short looping=1; 
//Assuming sizeX is evenly 

divisible by nproc
for(; 

bfi[in].dataFrameSize/nproc>(4L<<lgElemSize); lgElemSize++) ;

while (looping) {
long tsRecv=0; 
MPI_Status stat; 

MPI_Irecv(recvP, 

recvAreaBytes, 

MPI_BYTE, 0, idproc, 

MPI_COMM_WORLD, mpiInfo); 

MPI_Wait(mpiInfo, 
&stat); 

tsRecv=stat.len/(NumIndicies(idproc, nproc, maxIndex)
*bfi[in].numQ

*bfi[in].floatSize*2); 
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printf("%d bytes 
received. Transposing… ", stat.len); 

//Transpose and move 
the data 

TransposeInMNOutData((long*)recvP, 

(long*)(procP+(totalStepsRead

*NumIndicies(idproc, nproc, maxIndex)

*bfi[in].numQ

*bfi[in].floatSize*2)), 
lgElemSize, 

tsRecv*bfi[in].numQ, 1); 

totalStepsRead+=tsRecv; 

printf("%d steps so 
far.\n", totalStepsRead); 

if 
(totalStepsRead>=bfi[in].numSteps) 

looping=0; 
}

bfi[in].dataMode=1; 

bfi[in].dataMemSize=totalStepsRead
*NumIndicies(idproc, 

nproc, maxIndex)
*bfi[in].numQ
*bfi[in].floatSize*2; 

}
else {// node 0 

long 
readAreaBytes=((requestedBytes-storageAreaBytes-mpiInfoBytes)>>1)&~7; 

Byte *procP=bfi[in].dataP; 
Byte 

*readP=procP+storageAreaBytes; 
Byte 

*sendP=readP+readAreaBytes; 
MPI_Request 

*mpiInfo=(MPI_Request *)(sendP+readAreaBytes); 
long *mpiDoneFlags=(long 

*)(mpiInfo+nproc); 
long totalStepsRead=0; 
long lgElemSize=0; 
short looping=1; 
//Assuming sizeX is evenly 
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divisible by nproc
for(; 

bfi[in].dataFrameSize/nproc>(4L<<lgElemSize); lgElemSize++) ;

while (looping) {
long byteCount; 

if 
(totalStepsRead<bfi[in].numSteps) {

printf("Reading 
file…"); 

fseek(bfi[in].fp, bfi[in].currentPosition=

bfi[in].dataOffset+totalStepsRead*bfi[in].timeFrameSize, 
SEEK_SET); 

byteCount=readAreaBytes;

byteCount=fread(readP, 1, byteCount, bfi[in].fp);
}

else byteCount=0; 

#ifdef testdata
printf("Generating test data at node 

0\n"); 
{long ts; 
for 

(ts=(byteCount/bfi[in].timeFrameSize); ts>=0; ts--) {
long x=bfi[in].sizeX; 
ComplexSingle 

*d1tsP=(ComplexSingle *)(readP+
(ts*bfi[in].timeFrameSize)); 

ComplexSingle 
*d2tsP=d1tsP+bfi[in].sizeX; 

ComplexSingle tC; 
float tr; 

tC.a=cos((Pi/32.0)*(totalStepsRead+ts));
tC.b=sin((-

Pi/32.0)*(totalStepsRead+ts));
while (x--) {

float 
snx=sin(x*(Pi/bfi[in].sizeX)); 

float 
sn2x=sin(x*(Pi/bfi[in].sizeX)*2); 

float 
sn3x=sin(x*(Pi/bfi[in].sizeX)*3); 

ComplexSingle tC2, tC3, 
psi2; 

CScalar(d1tsP[x],tC,snx); 

CMult(tC2, tC, tC); 
CScalar(psi2,tC2,sn2x); 
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CMult(tC3,tC,tC2); 

d2tsP[x].a=sn3x*tC3.a+psi2.a; 

d2tsP[x].b=sn3x*tC3.b+psi2.b; 
}

}
}

#endif

if (totalStepsRead>0) 
{

short waiting=1; 

while (waiting) 
{

short 
finished=1; 

long 
lastWait=0; 

long i; 
for(i=1; 

i<nproc; i++) {
int 

flag; 

MPI_Status stat; 
if 

(!mpiDoneFlags[i]) {

MPI_Test(mpiInfo+i, &flag, &stat); 

if (!flag) {

finished=0; 

if (lastWait!=i) {

printf("Still waiting on node #%d…\n", i); 

lastWait=i; 

}

else printf("."); 

// break; 

}

else 

mpiDoneFlags[i]=1; 
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}
}

if 
(finished) waiting=0; 

}

}
//Now the send memory 

is free

if (byteCount>0) {
long 

tsRead=byteCount/bfi[in].timeFrameSize; 
long i; 

if 
(tsRead+totalStepsRead>bfi[in].numSteps) 

tsRead=bfi[in].numSteps-totalStepsRead; 

printf(" %d 
steps read.\n", tsRead); 

printf("Transposing data for sending… "); 
//Transpose the 

data to make it easier to send

TransposeInMNOutData((long*)readP, (long*)sendP, 

lgElemSize, nproc, tsRead*bfi[in].numQ); 

printf("MPI_Isends… "); 
//Head 'em up, 

move 'em out
for(i=1; 

i<nproc; i++) {

MPI_Isend(sendP+(StartIndex(i, nproc, maxIndex)*

tsRead*bfi[in].numQ*bfi[in].floatSize*2), 

(NumIndicies(i, nproc, maxIndex) 

*tsRead*bfi[in].numQ*bfi[in].floatSize*2), 

MPI_BYTE, i, i, 

MPI_COMM_WORLD, mpiInfo+i); 

mpiDoneFlags[i]=0; 
}
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printf("Transposing data for node 0…\n"); 
//Transpose and 

move the data that stays here

TransposeInMNOutData((long*)sendP, 

(long*)(procP+(totalStepsRead

*bfi[in].numQ

<<(lgElemSize+2))), 

lgElemSize, tsRead*bfi[in].numQ, 1); 

totalStepsRead+=tsRead; 

printf(" %d 
steps so far.\n", totalStepsRead); 

}
else looping=0; 

}

bfi[in].dataMode=1; 

bfi[in].dataMemSize=totalStepsRead
*NumIndicies(idproc, 

nproc, maxIndex)
*bfi[in].numQ
<<(lgElemSize+2); 

}

printf("Yum!\n"); 
/*The data should now be in a 

format where space 
is divided among processors for 

all q, but the time 
sequence for any one (q,x) is in 

rows within a processor. */

}
else 

printf("Insufficient memory on 
cluster.\n"); 

}

return out; 
}
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void RenormalizeBabyQData(short in, long spinType, long idproc, long 
nproc); 
void RenormalizeBabyQData(short in, long spinType, long idproc, long 
nproc)

{
long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize); 
if (bfi[in].numQ<2) spinType=maxwellian; 
switch (bfi[in].floatSize) {

case sizeof(float): 
{
long sumRow=bfi[in].numQ<<1; 
ComplexSingle *dp=(ComplexSingle *)bfi[in].dataP; 
ComplexSingle *sumP=dp+bfi[in].numSteps*bfi[in].numQ

*NumIndicies(idproc, nproc, maxIndex); 
ComplexSingle *sum2P=sumP+bfi[in].numSteps*sumRow; 

#ifdef testdata
printf("Generating test data\n"); 
{long ts=bfi[in].numSteps; 
while (ts--) {

long i=bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex); 
ComplexSingle *dtsP=dp+(ts*i); 
ComplexSingle tC; 
tC.a=cos((Pi/32.0)*ts);
tC.b=sin((Pi/32.0)*ts);
while (i--)

dtsP[i]=tC; 
}

}
#endif

//Clear arrays
{long i=bfi[in].numSteps*sumRow<<1; 
while (i--) sumP[i].b=sumP[i].a=0; 
}

printf(" summing within processor… \n"); 
switch (spinType) {

case fermion: 
{long ts=bfi[in].numSteps; 
while(ts--) {

{// Computing <Psi2|Psi1>
ComplexSingle 

*tp1=&dp[(ts*bfi[in].numQ)

*NumIndicies(idproc, nproc, maxIndex)]; 
ComplexSingle 

*tp2=&tp1[NumIndicies(idproc, nproc, maxIndex)]; 
long x=NumIndicies(idproc, 

nproc, maxIndex); 
float sumA=0, sumB=0; 
while (x--) {
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sumA+=tp2[x].a*tp1[x].a+tp2[x].b*tp1[x].b; 

sumB+=tp2[x].a*tp1[x].b-tp2[x].b*tp1[x].a; 
}

sumP[ts*sumRow+bfi[in].numQ].a=sumA; 

sumP[ts*sumRow+bfi[in].numQ].b=sumB; 
}

}

}
case maxwellian: 
default: 

{long ts=bfi[in].numSteps; 
while(ts--) {

long q=bfi[in].numQ; 
while (q--) { //Computing 

<PsiQ|PsiQ>
ComplexSingle 

*tp=&dp[(ts*bfi[in].numQ+q)

*NumIndicies(idproc, nproc, maxIndex)]; 
long x=NumIndicies(idproc, 

nproc, maxIndex); 
float sum=0; 
while (x--) {

sum+=CMagSq(tp[x]); 
}

sumP[ts*sumRow+q].a=sum; 
// printf("|psi #%d|^2 is %f ", 

q, sum); 
}

}

}
break; 

}

printf(" summing across processors… \n"); 
MPI_Allreduce(sumP, sum2P, 

bfi[in].numSteps*sumRow*2, MPI_FLOAT, MPI_SUM, 
MPI_COMM_WORLD); 

printf(" Calculating normalization factors… \n"); 
switch (spinType) {

case fermion: 
{long ts=bfi[in].numSteps; 
while(ts--) {

float 
norm=sum2P[ts*sumRow+0].a*sum2P[ts*sumRow+1].a

-
CMagSq(sum2P[ts*sumRow+bfi[in].numQ]); 
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long q=bfi[in].numQ; 

norm=norm>0?1.0/sqrt(sqrt(2.0*norm)):1.0; 
while (q--) {

sumP[ts*sumRow+q].a=norm; 
}

}
}
break; 

case maxwellian: 
default: 

{long ts=bfi[in].numSteps; 
while(ts--) {

long q=bfi[in].numQ; 
while (q--) {

sumP[ts*sumRow+q].a=sum2P[ts*sumRow+q].a?

1.0/sqrt(sum2P[ts*sumRow+q].a):1.0; 
}

}
}
break; 

}

printf(" Normalizing… \n"); 
{long ts=bfi[in].numSteps; 
while(ts--) {

long q=bfi[in].numQ; 
while (q--) {

float 
norm=sumP[ts*sumRow+q].a; 

ComplexSingle 
*tp=&dp[(ts*bfi[in].numQ+q)

*NumIndicies(idproc, nproc, maxIndex)]; 
long x=NumIndicies(idproc, 

nproc, maxIndex); 
while (x--) {

CScalar(tp[x], tp[x], 
norm); 

}
}

}
}

}
break; 

case sizeof(double): 
break; 

default: printf("Error.  Invalid float size.\n"); 
break; 
}
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}

void DoFFTYBabyQ(short in, long lgNumSteps, long idproc, long nproc)
{
if (CheckIndexOkay(in)) {

long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize); 

switch (bfi[in].floatSize) {
case sizeof(float): 

{
ComplexSingle *dp=(ComplexSingle 

*)bfi[in].dataP; 

{//Clear second half of data
float *tp=&dp[NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ<<lgNumSteps].a; 
long i=NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ<<(lgNumSteps+1); 
while (i--) tp[i]=0;
}

DoFFTYCSingleN(dp, lgNumSteps+1, 
NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ); 

}
break; 

case sizeof(double): 
{
ComplexDouble *dp=(ComplexDouble 

*)bfi[in].dataP; 

{//Clear second half of data
double *tp=&dp[NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ<<lgNumSteps].a; 
long i=NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ<<(lgNumSteps+1); 
while (i--) tp[i]=0;
}

DoFFTYCDoubleN(dp, lgNumSteps+1, 
NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ); 

}
break; 

default: 
break; 
}

}
}
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short CorrelElemBabyQ(short in, long ts1, long ts2, Complex *outP, 
long spinType, Complex *cxP, long idproc, long nproc)

{short out=0; 
if (outP)
if (CheckIndexOkay(in)) 
if (ts1>=0) if (ts2>=0) 
if (ts1<bfi[in].numSteps) 
if (ts2<bfi[in].numSteps) 

{
Byte *rawWF1P=nil, *rawWF2P=nil; 
long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize); 
long myStI=StartIndex(idproc, nproc, maxIndex); 
long myNumI=NumIndicies(idproc, nproc, maxIndex); 

if (bfi[in].numQ<2) spinType=maxwellian; 

if (1==bfi[in].dataMode) {
if (bfi[in].dataP) {

rawWF1P=bfi[in].dataP+myNumI*(2*bfi[in].floatSize)*ts1; 

rawWF2P=bfi[in].dataP+myNumI*(2*bfi[in].floatSize)*ts2; 
}

}
else {

}

if (rawWF1P&&rawWF2P) {
long nxp, nxpmx, 

numGrids=bfi[in].sizeX+bfi[in].nvp*(bfi[in].numPreGridCells+bfi[in].nu
mPostGridCells); 

nxp=bfi[in].nvp?bfi[in].sizeX/bfi[in].nvp:0; 

nxpmx=nxp+bfi[in].numPreGridCells+bfi[in].numPostGridCells; 

switch 
(bfi[in].floatSize) {

case 
sizeof(float): 

switch (spinType) {
case fermion: 

{float *wpA, *wpB, a=0, b=0, c=0, d=0, normA, normB; 
Complex outCx; 
long x=numGrids; 
wpA=(float*)(rawWF1P); 
wpB=(float*)(rawWF2P); 

while (x--) {
if 

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 
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{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+(x<<1)]-

wpA[1+(x<<1)]*wpB[0+(x<<1)];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

d=d+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids];

}
}

outCx.a=a*c-b*d; 
outCx.b=b*c+a*d; 

x=numGrids; 
a=0; 
b=0; 
c=0; 
d=0; 
while (x--) {

if 
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

b=b+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)]-
wpA[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)]+wpA[1+(x<<1)+numGrids]*wpB[1+
(x<<1)];

d=d+wpB[1+(x<<1)]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)];

}
}

outCx.a-=a*c-b*d; 
outCx.b-=b*c+a*d; 

x=numGrids; 
a=0; 
b=0; 
c=0; 
d=0; 
while (x--) {

if 
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)]+wpA[1+(x<<1)]*wpA[1+(x<<1)];

235



b=b+wpA[0+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpA[1+(x<<1)+numGrids];

c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)]+wpB[1+(x<<1)]*wpB[1+(x<<1)];

d=d+wpB[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

}
}

normA=a*b; 
normB=c*d; 

x=numGrids; 
a=0; 
b=0; 
c=0; 
d=0; 
while (x--) {

if 
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpA[1+(x<<1)+nu
mGrids];

b=b+wpA[0+(x<<1)]*wpA[1+(x<<1)+numGrids]-
wpA[1+(x<<1)]*wpA[0+(x<<1)+numGrids];

c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

d=d+wpB[0+(x<<1)]*wpB[1+(x<<1)+numGrids]-
wpB[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

}
}

normA-=a*a+b*b; 
normB-=c*c+d*d; 

normA=normA*normB; 
if (normA>0) normA=1.0/sqrt(normA); 
else normA=0; 

CAccumSMult(outP[0], outCx, normA); 
}

break; 
case boson: 

break; 
case maxwellian: 
default: 

{

/* for(index=0; index<myNumI; index++) {
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long x=(index+myStI)%numGrids, q=(index+myStI)/numGrids; 

}*/
long q; 
for(q=myStI/numGrids; q<=(myStI+myNumI)/numGrids; q++) {

long x; 
float *wpA=(float*)(rawWF1P)+((q*numGrids-myStI)<<1), 

*wpB=(float*)(rawWF2P)+((q*numGrids-myStI)<<1); 
float a=0, b=0; 

for(x=myStI-q*numGrids<0?0:myStI-q*numGrids; 
(x<numGrids)&&(x<myStI+myNumI-q*numGrids); 
x++) {

if 
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):true) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+x<<1]*wpB[0+x<<1]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+x<<1]-

wpA[1+(x<<1)]*wpB[0+x<<1];
}

}

cxP[q].a=outP[q].a+a; 
cxP[q].b=outP[q].b+b; 

}

}

MPI_Allreduce(cxP, outP, bfi[in].numQ<<1, 
sizeof(myReal)==4?MPI_FLOAT:MPI_DOUBLE, 
MPI_SUM, MPI_COMM_WORLD); 

/* {long q=bfi[in].numQ; 
while (q--) {
{float *wpA, *wpB, a=0, b=0; 
long x=numGrids; 
wpA=(float*)(rawWF1P+bfi[in].dataFrameSize*q); 
wpB=(float*)(rawWF2P+bfi[in].dataFrameSize*q); 

while (x--) {
if 

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+x<<1]*wpB[0+x<<1]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+x<<1]-

wpA[1+(x<<1)]*wpB[0+x<<1];
}
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}
outP[q].a+=a; 
outP[q].b+=b; 
}

}
}*/

break; 
}

break; 
case 

sizeof(double): 
switch (spinType) {

case fermion: 
{double *wpA, *wpB, a=0, b=0, c=0, d=0, normA, normB; 
Complex outCx; 
long x=numGrids; 
wpA=(double*)(rawWF1P); 
wpB=(double*)(rawWF2P); 

while (x--) {
if 

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+(x<<1)]-

wpA[1+(x<<1)]*wpB[0+(x<<1)];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

d=d+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids];

}
}

outCx.a=a*c-b*d; 
outCx.b=b*c+a*d; 

x=numGrids; 
a=0; 
b=0; 
c=0; 
d=0; 
while (x--) {

if 
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

b=b+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)]-
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wpA[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)]+wpA[1+(x<<1)+numGrids]*wpB[1+
(x<<1)];

d=d+wpB[1+(x<<1)]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)];

}
}

outCx.a-=a*c-b*d; 
outCx.b-=b*c+a*d; 

x=numGrids; 
a=0; 
b=0; 
c=0; 
d=0; 
while (x--) {

if 
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)]+wpA[1+(x<<1)]*wpA[1+(x<<1)];

b=b+wpA[0+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpA[1+(x<<1)+numGrids];

c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)]+wpB[1+(x<<1)]*wpB[1+(x<<1)];

d=d+wpB[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

}
}

normA=a*b; 
normB=c*d; 

x=numGrids; 
a=0; 
b=0; 
c=0; 
d=0; 
while (x--) {

if 
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpA[1+(x<<1)+nu
mGrids];

b=b+wpA[0+(x<<1)]*wpA[1+(x<<1)+numGrids]-
wpA[1+(x<<1)]*wpA[0+(x<<1)+numGrids];
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c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

d=d+wpB[0+(x<<1)]*wpB[1+(x<<1)+numGrids]-
wpB[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

}
}

normA-=a*a+b*b; 
normB-=c*c+d*d; 

normA=normA*normB; 
if (normA>0) normA=1.0/sqrt(normA); 
else normA=0; 

CAccumSMult(outP[0], outCx, normA); 
}

break; 
case boson: 

break; 
case maxwellian: 
default: 

{long q=bfi[in].numQ; 
while (q--) {
{double *wp1, *wp2, a=0, b=0; 
long x=numGrids; 
wp1=(double*)(rawWF1P+bfi[in].dataFrameSize*q); 
wp2=(double*)(rawWF2P+bfi[in].dataFrameSize*q); 

while (x--) {
if 

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1) 

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wp1[0+x<<1]*wp2[0+x<<1]+wp1[1+(x<<1)]*wp2[1+(x<<1)];
b=b+wp2[1+(x<<1)]*wp1[0+x<<1]-

wp1[1+(x<<1)]*wp2[0+x<<1];
}

}
outP[q].a+=a; 
outP[q].b+=b; 
}

}
}

break; 
}

break; 
default: 

break; 
}

}
}

return out; 
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}

#define MaxEigenMegs 32L
void CorrBabyQSpin(short in, long lgNumSteps, long spinType, Complex 
*cxOutP, long cxOutRow, FILE *tempEigenFile, long idproc, long nproc); 
void CorrBabyQSpin(short in, long lgNumSteps, long spinType, Complex 
*cxOutP, long cxOutRow, FILE *tempEigenFile, long idproc, long nproc)

{
long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize); 
if (bfi[in].numQ<2) spinType=maxwellian; 
if (cxOutP) if (cxOutRow) {

{long i=bfi[in].numSteps*cxOutRow; //Clear output 
while (i--) cxOutP[i].b=cxOutP[i].a=0; 
}

switch (spinType) {
case fermion: 

switch (bfi[in].floatSize) {
case sizeof(float): 

{
ComplexSingle *dp=(ComplexSingle 

*)bfi[in].dataP; 
Complex 

*p12P=(Complex*)(dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex)); 
ComplexSingle *p1x2P=(ComplexSingle 

*)(p12P+bfi[in].numSteps
*NumIndicies(idproc, nproc, 

maxIndex)); 
ComplexSingle 

*p2x2P=p1x2P+bfi[in].numSteps; 
// ComplexSingle 

*scratchP=p2x2P+bfi[in].numSteps; 
double startTime=MPI_Wtime(); 
long x2; 

//Clear arrays
{long i=bfi[in].numSteps

*NumIndicies(idproc, nproc, 
maxIndex); 

while (i--) p12P[i].b=p12P[i].a=0; 
}

#ifdef testdata
printf("Generating test data\n"); 
{long ts=bfi[in].numSteps; 
while (ts--) {

long x=NumIndicies(idproc, nproc, 
maxIndex); 

ComplexSingle 
*d1tsP=dp+(ts*NumIndicies(idproc, nproc, maxIndex)*bfi[in].numQ); 

ComplexSingle 
*d2tsP=d1tsP+NumIndicies(idproc, nproc, maxIndex); 

ComplexSingle tC; 
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float tr; 
tC.a=cos((Pi/32.0)*ts);
tC.b=sin((-Pi/32.0)*ts);
while (x--) {

float 
snx=sin((x+StartIndex(idproc, nproc, maxIndex))*(Pi/bfi[in].sizeX)); 

float 
sn2x=sin(2*(x+StartIndex(idproc, nproc, 
maxIndex))*(Pi/bfi[in].sizeX)); 

CScalar(d1tsP[x],tC,snx); 
CMult(d2tsP[x],sn2x*tC,tC); 
}

}
}

#endif

for(x2=0; x2<bfi[in].sizeX; x2++) {
printf(" x2= %d/%d\n", x2, 

bfi[in].sizeX); 

//Need to distribute Psi(x2)'s 
{long root; //who has the data
for(root=0; (root<nproc)

&&((x2<StartIndex(root, 
nproc, maxIndex))

||(x2>=StartIndex(root+1, 
nproc, maxIndex))); root++) ;

if (idproc==root) {
long ts=bfi[in].numSteps; 

while (ts--) {

p1x2P[ts]=dp[(ts*bfi[in].numQ)

*NumIndicies(idproc, nproc, maxIndex)
-

StartIndex(idproc, nproc, maxIndex)+x2]; 

p2x2P[ts]=dp[(ts*bfi[in].numQ+1)

*NumIndicies(idproc, nproc, maxIndex)
-

StartIndex(idproc, nproc, maxIndex)+x2]; 
}

}
else {//nothing to be done

}
printf("  #%d Bcasting Psi data at 

x2=%d… \n", root, x2); 

MPI_Bcast(p1x2P, 
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bfi[in].numSteps*2*2, MPI_FLOAT, 
root, MPI_COMM_WORLD); 

}

printf("  Forming Psi12(x1, %d, 
t)…\n", x2); 

//form a line of psi12
{
long ts=bfi[in].numSteps; 
while (ts--) {

ComplexSingle 
*p1tsP=&dp[(ts*bfi[in].numQ)

*NumIndicies(idproc, nproc, maxIndex)]; 
ComplexSingle 

*p2tsP=&dp[(ts*bfi[in].numQ+1)

*NumIndicies(idproc, nproc, maxIndex)]; 
Complex *p12tsP=&p12P[ts

*NumIndicies(idproc, 
nproc, maxIndex)]; 

long x1=NumIndicies(idproc, 
nproc, maxIndex); 

while (x1--) {
/*p1tsP[x1]*p2x2P[ts]

-
p2tsP[x1]*p1x2P[ts]; */

myReal 
a=p1tsP[x1].a*(myReal)p2x2P[ts].a-
(myReal)p1tsP[x1].b*(myReal)p2x2P[ts].b

-
(myReal)p2tsP[x1].a*(myReal)p1x2P[ts].a+(myReal)p2tsP[x1].b*(myReal)p1
x2P[ts].b; 

myReal 
b=(myReal)p1tsP[x1].a*(myReal)p2x2P[ts].b+(myReal)p1tsP[x1].b*(myReal)
p2x2P[ts].a

-
(myReal)p2tsP[x1].a*(myReal)p1x2P[ts].b-
(myReal)p2tsP[x1].b*(myReal)p1x2P[ts].a; 

p12tsP[x1].a=a; 
p12tsP[x1].b=b; 
}

}
}
{//Clearing second half of data
long ts=bfi[in].numSteps; 
while (ts--) {

Complex *p12tsP=

&p12P[(ts+bfi[in].numSteps)
*NumIndicies(idproc, 

nproc, maxIndex)]; 
long x1=NumIndicies(idproc, 

nproc, maxIndex); 
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while (x1--) {
p12tsP[x1].a=0; 
p12tsP[x1].b=0; 
}

}
}

printf("  doing FFT %d times on a 
%d array…\n", 

NumIndicies(idproc, nproc, 
maxIndex), 

2L<<lgNumSteps); 
/* DoFFTYCSingleN(p12P, lgNumSteps+1, 

NumIndicies(idproc, nproc, 
maxIndex)); */

DoFFTYCN(p12P, lgNumSteps+1, 
NumIndicies(idproc, nproc, 

maxIndex)); 

if (tempEigenFile) {
//eigenfunction save
long numWs=bfi[in].numSteps; 
if 

(maxIndex*(myReal)maxIndex*(myReal)sizeof(Complex)*(myReal)numWs>(MaxE
igenMegs<<20)

/*final file size 
shouldn't exceed MaxEigenMegs*/) 

numWs=(MaxEigenMegs<<20)/(maxIndex*(myReal)maxIndex*sizeof(Complex)); 
printf("   saving data for 

%d fermion eigenfunctions into temporary file…\n"
, numWs); 

/* {long w=8; 
while (w--) 
{long x1=NumIndicies(idproc, 

nproc, maxIndex); 
while (x1--) 

p12P[x1+w*maxIndex].a=
0.01*exp(-

0.005*((x1-w)*(x1-w)+x2*x2)); 
}
}/**/

fwrite(p12P, 1L, 
NumIndicies(idproc, 

nproc, maxIndex)*sizeof(Complex)*numWs, 
tempEigenFile); 

if (ferror(tempEigenFile)) 
perror("fwrite etemp "); 

}

printf("  summing into 
output…\n"); 
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//sum into correlation output
{long w=bfi[in].numSteps; 
while (w--) {

Complex 
*p12negwP=&p12P[(bfi[in].numSteps*2-1-w)

*NumIndicies(idproc, 
nproc, maxIndex)]; 

Complex *p12wP=&p12P[w
*NumIndicies(idproc, 

nproc, maxIndex)]; 
long x1=NumIndicies(idproc, 

nproc, maxIndex); 
myReal sumA=0, sumB=0; 
while (x1--) {
/* sumA+=p12tsP[x1].a; 

sumB+=p12tsP[x1].b; */

sumA+=p12wP[x1].a*p12wP[x1].a+p12wP[x1].b*p12wP[x1].b; 

sumB+=p12negwP[x1].a*p12negwP[x1].a+p12negwP[x1].b*p12negwP[x1].b; 
}

cxOutP[cxOutRow*w].a+=sumA; 
cxOutP[cxOutRow*w].b+=sumB; 
}

}

{
long etr=((bfi[in].sizeX-

(1+x2))*(MPI_Wtime()-startTime)/(1+x2)); 
long s, m, h; 
char etrStr[64]; 
s=etr%60; etr/=60; 
m=etr%60; etr/=60; 
h=etr%24; etr/=24; 
sprintf(etrStr, "ETR: %dd%2dh%2dm%2ds", 

etr, h, m, s); 
#ifdef __MEMORY__ //detects if on the Mac

logname(etrStr); 
#endif

printf(" %s\n", etrStr); 
}

}

printf(" summing output across 
processors…\n"); 

MPI_Allreduce(cxOutP, p12P, 
cxOutRow*bfi[in].numSteps*2, 

MPI_DOUBLE, MPI_SUM, 
MPI_COMM_WORLD); 

{long i=bfi[in].numSteps*cxOutRow; 
//copy output 
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while (i--) 
cxOutP[i]=((Complex*)p12P)[i]; 

}

{
long etr=(MPI_Wtime()-startTime); 
long s, m, h; 
s=etr%60; etr/=60; 
m=etr%60; etr/=60; 
h=etr%24; etr/=24; 
printf("Time Elapsed: 

%dd%2dh%2dm%2ds\n", etr, h, m, s); 
}

}
break; 

case sizeof(double): 
break; 

default: 
break; 

}

break; 
case maxwellian: 
default: 

/*
printf("Doing FFTY… "); 
DoFFTYBabyQ(in, lgNumSteps, 

idproc, nproc); 
printf("Done\n"); 

{
long w; 

for(w=0; w<bfi[in].numSteps; w++) 
{

if (!(w&0x3f)) 
printf("%d/%d\n", w, bfi[in].numSteps); 

/* CorrelElemBabyQ(in, w, w, 
cxOutP+(w*bfi[in].numQ), 

spinType, cxP, idproc, 
nproc); * /

}

}/**/
{
ComplexSingle *dp=(ComplexSingle 

*)bfi[in].dataP; 
ComplexSingle 

*scratchP=dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex); 

//Clear second half
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{long i=bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex); 
while (i--) 

scratchP[i].b=scratchP[i].a=0; 
}

#ifdef testdata
printf("Generating test data\n"); 
{long ts=bfi[in].numSteps; 
while (ts--) {

long i=bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex); 
ComplexSingle *dtsP=dp+(ts*i); 
ComplexSingle tC; 
tC.a=cos((Pi/32.0)*ts);
tC.b=sin((-Pi/32.0)*ts);
while (i--)

dtsP[i]=tC; 
}

}
#endif

printf(" doing FFT on %d array %d 
times\n", 

2L<<lgNumSteps, 
NumIndicies(idproc, nproc, maxIndex)*bfi[in].numQ); 

DoFFTYCSingleN(dp, lgNumSteps+1, 
NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ); 

if (tempEigenFile) {
//eigenfunction save
long numWs=bfi[in].numSteps; 
if 

(maxIndex*bfi[in].numQ*sizeof(ComplexSingle)*numWs>(MaxEigenMegs<<20)/
*32 megs*/) 

numWs=(MaxEigenMegs<<20)/(maxIndex*bfi[in].numQ*sizeof(ComplexSingle))
; 

fwrite(dp, 1, 
NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ*sizeof(ComplexSingle)*numWs, 
tempEigenFile); 

}

printf("  summing into correlation 
output…\n"); 

{long w=bfi[in].numSteps; 
while (w--) {

long q=bfi[in].numQ; 
while (q--) {

ComplexSingle 
*ptsqP=&dp[(w*bfi[in].numQ+q)
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*NumIndicies(idproc, 
nproc, maxIndex)]; 

long x1=NumIndicies(idproc, 
nproc, maxIndex); 

float sumA=0, sumB=0; 
while (x1--) {

/*sumA+=ptsqP[x1].a; 
sumB+=ptsqP[x1].b; */

sumA+=ptsqP[x1].a*ptsqP[x1].a+ptsqP[x1].b*ptsqP[x1].b; 
}

cxOutP[cxOutRow*w+q].a+=sumA*bfi[in].sizeX; 

cxOutP[cxOutRow*w+q].b+=sumB*bfi[in].sizeX; 
}

}
}

printf(" summing output across 
processors…\n"); 

MPI_Allreduce(cxOutP, scratchP, 
cxOutRow*bfi[in].numSteps*2, 

MPI_DOUBLE, MPI_SUM, 
MPI_COMM_WORLD); 

{long i=bfi[in].numSteps*cxOutRow; 
//copy output 

while (i--) 
cxOutP[i]=((Complex*)scratchP)[i]; 

}

}
break; 
}
}

}

void GatherEigenBabyQData(short in, long lgNumSteps, long spinType, 
const char *outEigenFN, FILE *tempEigenFile, long idproc, long nproc); 
void GatherEigenBabyQData(short in, long lgNumSteps, long spinType, 
const char *outEigenFN, FILE *tempEigenFile, long idproc, long nproc)

{//Shuffles data from the temp files into the final eigenstate 
output files

//This rourine is primarily network and disk i/o intensive.  Not 
much computation.  

long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize); 
if (bfi[in].numQ<2) spinType=maxwellian; 
if (tempEigenFile) if (outEigenFN) {

rewind(tempEigenFile); //Reset to beginning

switch (spinType) {
case fermion: 
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switch (bfi[in].floatSize) {
case sizeof(float): 

{
Complex *dp=(Complex *)bfi[in].dataP; 
Complex 

*scratchP=dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex)*sizeof(ComplexSingle)/sizeof(Complex); 
MPI_Request *mpiReqP=(MPI_Request 

*)(scratchP+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex)*sizeof(ComplexSingle)/sizeof(Complex)); 
MPI_Status *mpiStatusP=(MPI_Status 

*)(mpiReqP+nproc); 
long lgElemSize=0, 

numWs=bfi[in].numSteps, 
chunkWs; 

//Assuming sizeX is evenly divisible by 
nproc

for(; 
sizeof(Complex)*maxIndex/nproc>(4L<<lgElemSize); lgElemSize++) ;

if 
(maxIndex*(myReal)maxIndex*(myReal)sizeof(Complex)*(myReal)numWs>(MaxE
igenMegs<<20)/*MaxEigenMegs megs*/) 

numWs=(MaxEigenMegs<<20)/(maxIndex*(myReal)maxIndex*(myReal)sizeof(Com
plex)); 

chunkWs=bfi[in].numSteps*bfi[in].numQ*sizeof(ComplexSingle)/
(maxIndex*sizeof(Complex)*nproc); 

if (chunkWs<1) chunkWs=1; 

if (chunkWs>numWs) chunkWs=numWs; 

if (idproc) {
long w; 
for(w=0; w<numWs; w+=chunkWs) {

long sendWs=chunkWs, x2; 
if (w+sendWs>numWs) sendWs=numWs-w; 

printf("Sending data for eigenstates %d to %d out of 
%d.\n", w, sendWs+w, numWs); 

for(x2=0; x2<maxIndex; x2++) {
fseek(tempEigenFile, 

(w+x2*numWs)*NumIndicies(idproc, nproc, 
maxIndex)*sizeof(Complex), 

SEEK_SET); 
fread(dp+x2*sendWs*NumIndicies(idproc, nproc, 

maxIndex), 
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1L, 
sendWs*NumIndicies(idproc, nproc, 

maxIndex)*sizeof(Complex), 
tempEigenFile); 

}

//Copy & transpose
TransposeInMNOutData((long*)dp, 

(long*)scratchP, lgElemSize, sendWs, maxIndex); 

MPI_Send(scratchP, 
NumIndicies(idproc, nproc, 

maxIndex)*maxIndex*sizeof(Complex)*sendWs, 
MPI_BYTE, 0, idproc, MPI_COMM_WORLD);

}

}
else {//node 0

long w; 
FILE *outEigenFP=fopen(outEigenFN, "wb"); 

//write header
if (outEigenFP) {

BabyQBinaryHeaderStruct header; 
long i=sizeof(BabyQBinaryHeaderStruct)>>2, 

*tp=(long*)&header; 
while (i--) tp[i]=0; 

rewind(outEigenFP); 

header.negVersion=-1L; 
header.dataOffset=sizeof(BabyQBinaryHeaderStruct);  //in 

bytes from top of struct
header.floatSize=sizeof(myReal);
header.numSteps=numWs; 
header.numQ=maxIndex;
header.sizeX=maxIndex; 

fwrite(&header, 1L, 
sizeof(BabyQBinaryHeaderStruct),
outEigenFP); 

}

for(w=0; w<numWs; w+=chunkWs) {
long sendWs=chunkWs; 
if (w+sendWs>numWs) sendWs=numWs-w; 

printf("Receiving and processing data for eigenstates %d 
to %d out of %d.\n", w, sendWs+w, numWs); 

{long x2; 
for(x2=0; x2<maxIndex; x2++) {
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int err; 
err=fseek(tempEigenFile, 

(w+x2*numWs)*NumIndicies(idproc, nproc, 
maxIndex)*sizeof(Complex), 

SEEK_SET); 
if (err) printf("fseek err= %d\n", err); 
err=fread(dp+x2*sendWs*NumIndicies(idproc, nproc, 

maxIndex), 
1L, 
sendWs*NumIndicies(idproc, nproc, 

maxIndex)*sizeof(Complex), 
tempEigenFile); 

if (ferror(tempEigenFile)) printf("fread err= %d 
\n", ferror(tempEigenFile)); 

}
}

{long i; 
for(i=1; i<nproc; i++) {

MPI_Irecv(scratchP+StartIndex(i, nproc, 
maxIndex)*maxIndex*sendWs, 

NumIndicies(i, nproc, 
maxIndex)*maxIndex*sizeof(Complex)*sendWs, 

MPI_BYTE, i, i, MPI_COMM_WORLD, 
mpiReqP+i);

}
}

/* {
long x1; 
x1=maxIndex; 
while (x1--) {

long tr1=(x1-w*2-1); 
long x2=maxIndex; 
tr1*=tr1; 
while (x2--) {

myReal tr=(x2-w-1); 
dp[x2+x1*maxIndex*sendWs].a=0.000001*exp(-

0.001*(tr1+tr*tr)); 
dp[x2+x1*maxIndex*sendWs].b=0; 
}

}
}*/

//Copy & transpose
TransposeInMNOutData((long*)dp, (long*)scratchP, 

lgElemSize, sendWs, maxIndex); 

MPI_Waitall(nproc-1, mpiReqP+1, mpiStatusP+1);

TransposeInMNOutData((long*)scratchP, (long*)dp, 
lgElemSize, maxIndex*sendWs, nproc); 
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if (outEigenFP) {
fwrite(dp, 1, 

maxIndex*maxIndex*sizeof(Complex)*sendWs, 
outEigenFP); 

}

}

if (outEigenFP) 
fclose(outEigenFP); 

}

}
break; 

case sizeof(double): 
break; 

default: 
break; 

}

break; 
case maxwellian: 
default: 

{
ComplexSingle *dp=(ComplexSingle 

*)bfi[in].dataP; 
ComplexSingle 

*scratchP=dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex); 
MPI_Request *mpiReqP=(MPI_Request 

*)(scratchP+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc, 

maxIndex)); 
MPI_Status *mpiStatusP=(MPI_Status 

*)(mpiReqP+nproc); 
long lgElemSize=0, 

numWs=bfi[in].numSteps, chunkWs=bfi[in].numSteps/nproc; 

//Assuming sizeX is evenly divisible by 
nproc

for(; 
bfi[in].dataFrameSize/nproc>(4L<<lgElemSize); lgElemSize++) ;

if 
(maxIndex*bfi[in].numQ*sizeof(ComplexSingle)*numWs>(MaxEigenMegs<<20)) 

numWs=(MaxEigenMegs<<20)/(maxIndex*bfi[in].numQ*sizeof(ComplexSingle))
; 

if (chunkWs>numWs) chunkWs=numWs; 
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if (idproc) {
long w; 
for(w=0; w<numWs; w+=chunkWs) {

long sendWs=chunkWs; 
if (w+sendWs>numWs) sendWs=numWs-w; 

MPI_Send(dp+NumIndicies(idproc, nproc, 
maxIndex)*bfi[in].numQ*w, 

NumIndicies(idproc, nproc, 
maxIndex)*bfi[in].numQ*sizeof(ComplexSingle)*sendWs, 

MPI_BYTE, 0, idproc, MPI_COMM_WORLD);

}

}
else {//node 0

long w; 
FILE *outEigenFP=fopen(outEigenFN, "w"); 

//write header
if (outEigenFP) {

BabyQBinaryHeaderStruct header; 
long i=sizeof(BabyQBinaryHeaderStruct)>>2, 

*tp=(long*)&header; 
while (i--) tp[i]=0; 

header.negVersion=-1L; 
header.dataOffset=sizeof(BabyQBinaryHeaderStruct);  //in 

bytes from top of struct
header.floatSize=sizeof(float);
header.numSteps=numWs; 
header.numQ=bfi[in].numQ;
header.sizeX=maxIndex; 

fwrite(&header, 1, 
sizeof(BabyQBinaryHeaderStruct),
outEigenFP); 

}

for(w=0; w<numWs; w+=chunkWs) {
long sendWs=chunkWs; 
if (w+sendWs>numWs) sendWs=numWs-w; 

{long i; 
for(i=1; i<nproc; i++) {

MPI_Irecv(scratchP+StartIndex(i, nproc, 
maxIndex)*bfi[in].numQ*w, 

NumIndicies(i, nproc, 
maxIndex)*bfi[in].numQ*sizeof(ComplexSingle)*sendWs, 

MPI_BYTE, i, i, MPI_COMM_WORLD, 
mpiReqP+i);
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}
}

//Copy & transpose
TransposeInMNOutData((long*)dp+NumIndicies(idproc, nproc, 

maxIndex)*bfi[in].numQ*w, 
(long*)scratchP, lgElemSize, 1, 

bfi[in].numQ*sendWs); 

MPI_Waitall(nproc-1, mpiReqP+1, mpiStatusP+1);

TransposeInMNOutData((long*)dp, (long*)scratchP, 
lgElemSize, bfi[in].numQ*sendWs, nproc); 

if (outEigenFP) {
fwrite(scratchP, 1, 

maxIndex*bfi[in].numQ*sizeof(ComplexSingle)*sendWs, 
outEigenFP); 

}

}

if (outEigenFP) 
fclose(outEigenFP); 

}

}
break; 
}
}

}

void CorrelateBabyqBinFileSpin(const char *inFileName, const char 
*outFileName, const char *outEigenFileName, short spinType, 

long idproc, long nproc)
{
OSErr err; 
long nextCheckEscape=0; 

if (inFileName) {
short fref; 

printf("Opening %s… \n", inFileName); 
fref=OpenBabyQBinFile(inFileName, idproc, nproc); 

if (fref) {

if (outFileName) {
Handle correlOutH=nil; 
long numQ=GetNumQ(fref), 

numSteps=GetNumSteps(fref); 
unsigned long lgNumQ, lgNumSteps; 

254



switch (spinType) {
case fermion: 
case boson: 

if (numQ>1) numQ=1; 
break; 

case maxwellian: 
default: break; 
}

for(lgNumQ=0; numQ>(1L<<lgNumQ); lgNumQ++) ; 
for(lgNumSteps=30; numSteps<(1L<<lgNumSteps); 

lgNumSteps--) ; 

correlOutH=NewHandle(sizeof(Complex)*
(numSteps+2)<<lgNumQ); 

if (correlOutH) {
Complex *correlOutTop; 
Complex *cxP; 
long leaving=0; 
FILE *tempEigenFile=nil; 
char tEFN[FILENAME_MAX]=""; 

MoveHHi(correlOutH); 
HLock(correlOutH); 

{long *tp=(long*)*correlOutH, 
i=GetHandleSize(correlOutH)>>2; 

while(i--) tp[i]=0; }
correlOutTop=(Complex*)*correlOutH; 
cxP=(correlOutTop+(numSteps<<lgNumQ)); 

printf("Attempting to load all data…"); 
if (LoadAllBabyQData(fref, idproc, 

nproc)) { 

printf("Renormalizing data…"); 
RenormalizeBabyQData(fref, 

spinType, idproc, nproc); 

if (outEigenFileName) {
sprintf(tEFN, "%sTemp%d/%d", 

outEigenFileName, idproc, nproc); 
tempEigenFile=fopen(tEFN, 

"w+b"); 
if (tempEigenFile) {

rewind(tempEigenFile); 
}

}

printf("Doing Correlation of %d 
time steps…\n", numSteps); 
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CorrBabyQSpin(fref, lgNumSteps, 
spinType, 

correlOutTop, 1L<<lgNumQ, 
tempEigenFile, 

idproc, nproc); 

}
else {

leaving=1; 
}

if (!leaving) if (!idproc) { FILE *outfp=nil; 
//Only node 0 writes

/* if (tSFP.sfReplacing) 
FSpDelete(&tSFP.sfFile); 

FSpCreate(&tSFP.sfFile, 'R*ch', 'TEXT', 
tSFP.sfScript); */

printf("Opening out file…\n"); 
// FSpOpenDF(&tSFP.sfFile, fsWrPerm, &outref); 

outfp=fopen(outFileName, "w"); 

printf("Writing output…\n"); 

#ifdef mathematica
{long q; 
for(q=0; q<numQ; q++) {

if (numQ>1) {
fprintf(outfp, "%s", q?",\n":"{"/*}*/); 
}

{
long tau; 

for(tau=0; tau<(numSteps); tau++) 
{

myReal 
adjust=1.0/*((myReal)numSteps-tau)*/; 

myReal 
ca=correlOutTop[q+(tau<<lgNumQ)].a*=adjust, 

cb=correlOutTop[q+(tau<<lgNumQ)].b*=adjust; 
long 

ex=ca?log10(fabs(ca)):0; 

fprintf(outfp, "%s", 
tau?",\n":"{"/*}*/); 

ca*=exp(-log(10.0)*ex); 
fprintf(outfp, "%-.12g * 

10^%d", ca, ex); 
ex=cb?log10(fabs(cb)):0; 
fprintf(outfp, " + I* ");  
cb*=exp(-log(10.0)*ex); 
fprintf(outfp, "%-.12g * 
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10^%d", cb, ex); 

}
}

fprintf(outfp,  /*{*/"}"); 

}
if (numQ>1) {

fprintf(outfp, /*{*/"}"); 
}

}
#else

{long tau; 
for(tau=0; tau<(numSteps); tau++) {

{
long q; 

for(q=0; q<numQ; q++) {
myReal 

adjust=1.0/*((myReal)numSteps-tau)*/; 
myReal 

ca=correlOutTop[q+(tau<<lgNumQ)].a*=adjust, 

cb=correlOutTop[q+(tau<<lgNumQ)].b*=adjust; 

fprintf(outfp, "%-16.12g", 
ca); 

fprintf(outfp, "\t");  
fprintf(outfp, "%-16.12g", 

cb); 
fprintf(outfp, "\t");  

}
}

fprintf(outfp,  "\n"); 

}
}

#endif

if (0) {
//Now, Fourier transform the data
printf("Doing FFT…"); 
DoFFTYC(correlOutTop, lgNumSteps, lgNumQ); 
printf("Writing FT…"); 
{long q; 

fprintf(outfp, "\n\n"); 

for(q=0; q<numQ; q++) {
if (numQ>1) {
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fprintf(outfp, "%s", q?",\n":"{" /*}*/); 
}

{
long tau; 

for(tau=0; tau<(1<<(lgNumSteps-
1)); tau++) {

fprintf(outfp, "%s", 
tau?",\n":"{"/*}*/); 

fprintf(outfp, "%-16.12g + 
I* %-16.12g", 

correlOutTop[q+(tau<<lgNumQ)].a, 

correlOutTop[q+(tau<<lgNumQ)].b); 
}

}

fprintf(outfp, /*{*/"}"); 

}
if (numQ>1) {

fprintf(outfp, /*{*/"}"); 
}

}
}

#undef fprint

printf("\nClosing out file\n"); 
fclose(outfp); 

}

if (tempEigenFile) {
printf("\nGathering Eigenstate 

data to node zero…\n"); 
GatherEigenBabyQData(fref, 

lgNumSteps, spinType, 
outEigenFileName, 

tempEigenFile, idproc, nproc); 

fclose(tempEigenFile); 
remove(tEFN); 
}

HUnlock(correlOutH); 
DisposeHandle(correlOutH); 
correlOutH=nil; 
}

else printf(" Out of Memory!\n"); 
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}

printf("Closing…\n"); 
CloseBabyQBinFile(fref, idproc, nproc); 
} 

else {
printf("Unable to open input babyq data file.\n"); 
perror(inFileName); 
}

}

}

Listing G.  Quantum data reader, correlation analysis, and eigenstate 

extraction code.  
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