
Accessible computing power has be-
come the main motivation for cluster
computing—some wish to tap the
proliferation of desktop computers,

while others seek clustering because they find ac-
cess to large supercomputing centers to be diffi-
cult or unattainable. Both want to combine
smaller machines to provide sufficient access to
computational power. In this article, we describe
our approach to cluster computing to best
achieve these goals for scientific users and, ulti-
mately, for the mainstream end user. 

One approach, introduced in the mid-1990s,
used a parallel computing message-passing library
with the Linux operating system and became
known as Beowulf-style cluster computing.1 Today,
the message-passing interface (MPI)2 is a dominant
industry standard, and many MPI implementations
are available under open-source license. (Most ma-
jor supercomputing centers only use MPI for dis-
tributed-memory parallel computing; the absence

of other message-passing schemes on new hard-
ware is evident at http://hpcf.nersc.gov/
software/libs and www.npaci.edu/BlueHorizon/
guide/ref.html.)

Our goal is to minimize the time needed to as-
semble and run a working cluster. Simplicity and
straightforwardness are just as important as pro-
cessing power because power provides nothing if it
can’t be used effectively. Moreover, our solution
should provide a better total price-to-performance
ratio and a higher commitment to the original pur-
pose of such systems: providing the user with large
amounts of accessible computing power. 

Since 1998, we in the University of California,
Los Angeles, Plasma Physics Group have been de-
veloping and using a solution to meet these design
criteria. It’s based on the Macintosh operating sys-
tem and uses PowerPC-based Macintosh (Power
Mac) hardware; we call it a Mac cluster.3 In our on-
going effort to improve user experience, we con-
tinue to streamline the software and add numerous
new features. With OS X, the latest, Unix-based
version of the Mac OS (www.apple.com/macosx),
we’re seeing the convergence of the best of Unix
with the best of the Mac.

We’ve extended the Mac’s ease of use to parallel
computing for the sake of accessible computing
power. In this article, we describe how a user can
build a Mac cluster and demonstrate how to oper-
ate it. We then describe the technology we built to
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accomplish our goals. Part of our effort involves re-
thinking and streamlining cluster design, installa-
tion, and operation. We believe this experience has
led us to a cluster solution that maximizes the user’s
accessibility to computational power.

Building, Running, 
and Debugging the Cluster
Streamlining cluster setup to the bare minimum,
the steps to building a Mac cluster essentially in-
volve connecting the computers to the network, as-
signing network names and addresses to the nodes,
and installing the software. 

Building a Mac cluster begins by collecting the
hardware: the Power Mac G5s, one category 5 Eth-
ernet cable with RJ-45 jacks per Mac, and an Eth-
ernet switch. The latest Power Mac models have
either fast (100BaseT) or Gbit Ethernet, so a
switch of either type will function well. For each
Mac, one end of a cable plugs into the Ethernet
jack on the Mac and the other end to a port on the
switch. System software is a simple matter: Macs
come preinstalled with Mac OS X, so configuring
the Macs generally involves making sure each one
has a working Internet or IP connection and a
unique name, specified in the Network and Shar-
ing System Preferences. Finally, a software pack-
age called Pooch operates the cluster (see
http://daugerresearch.com/pooch/ for a download
version). Running the installer on each Mac’s hard
drive completes the parallel computer. Software in-
stallation on a node takes only a few seconds,
brevity not found in other cluster types.

Because the intention is that the cluster user will
spend most of his or her time interacting with the
cluster performing job-launching activities, we’ve
invested considerable effort in refining the inter-
face design to minimize the time for the user to run
a parallel job. In our documentation, we recom-
mend that users first test their Mac cluster with a
simple, reliable parallel computing job. For the
purpose of this initial test, the AltiVec Fractal Car-
bon demo, a demonstration parallel application, is
available for free download at http://daugerre-
search.com/pooch/. This demonstration of high-
performance computing also runs on a single node.
The user runs the application in parallel by select-
ing New Job from Pooch’s File menu. This action
opens up a new Job window; the user can drag the
AltiVec Fractal Carbon demo from the Finder to
this Job window, as depicted in Figure 1.

Next, the user chooses nodes to run in parallel.
By default, Pooch selects the node where the job is
specified. To add more, the user clicks on Select
Nodes…, which invokes a Network Scan window,

shown in Figure 2. Double-clicking on a node
moves it to the Job window’s node list. If a machine
running OS X has two processors, Pooch can use
them as if they were separate nodes. Finally, the
user starts the parallel job by clicking on Launch
Job. Pooch should now be distributing copies of
the parallel application to the other nodes and ini-
tiating them in parallel. Upon completion of its
computational task, the program then calculates its
achieved performance, which should be signifi-
cantly greater than single-node performance.

This initial test also trains the user to accomplish
the fundamental tasks required to run a parallel job:
selecting an executable, selecting computational re-
sources, and combining these selections through
job initiation. Streamlining this user interface is im-
portant because submitting jobs is a repetitive task
that can potentially occupy much of the user’s time.
We chose a GUI because it tolerates the type of er-
ror and imprecision that users can accidentally in-
troduce when operating a device. This use of a

Figure 1. Using the cluster. To set up a parallel computing job, the user
drags a parallel application, in this case the AltiVec Fractal Carbon
demo, and drops it in Pooch’s Job window.

Figure 2. Selecting nodes. The user chooses
computational resources via the Network Scan
window, invoked by clicking on Select Nodes from
the window in Figure 1.
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GUI is meant to contribute to the efficiency with
which the user can operate the cluster.

So that our group’s researchers could maximize
their time studying physics, we’ve added enhance-
ments, beyond basic message passing, to the MPI
implementation we call MacMPI that make it eas-
ier for them to develop parallel programs. One of
these is the monitoring of MPI messages, con-
trolled by a monitor flag in MacMPI: it can log
every message sent or received. In its default set-
ting, a small monitor window appears (see Figure
3). In this window, status lights indicate whether
the node whose screen is being examined is send-
ing or receiving messages from any other node.
Green indicates sending, red indicates receiving,
and yellow means both. Because messages are nor-
mally sent very quickly, these lights blink rapidly.
However, if a deadlock occurs, a common occur-
rence for beginning programmers, the lights will
stay lit. The moment such a problem occurs,
though, a particular color pattern is immediately
visible to the user, who can then apply the new in-
formation to debugging the code.

The monitor window also shows a color-coded
histogram of the message sizes sent or received to
draw the user’s attention to the length of the mes-
sages the code is sending. The two dials in MacMPI’s

monitor window show the approximate percent of
time spent in communication and the average and in-
stantaneous speeds achieved during communication.
Although approximate, these indicators are invalu-
able in revealing problems in the code and network.

Implementation
In the Mac cluster’s design, we made the responsi-
bilities of the communications library distinct and
separate from the code that launches jobs and man-
ages the cluster.

MacMPI
MacMPI, freely available from the AppleSeed site
(http://exodus.physics.ucla.edu/appleseed/), is Vik-
tor Decyk’s 45-routine subset of MPI implemented
via the Mac OS’s networking APIs. It exists in two
forms: MacMPI_X, which uses Apple’s latest Open
Transport implementation of TCP/IP available in
both OS 9 and OS X, and MacMPI_S, which uses
the Unix socket implementation in OS X (see
http://developer.apple.com/documentation/Core
Foundation/Networking-date.html).

Using MacMPI, we achieve excellent network
performance comparable to other implementa-
tions. On OS X, we achieve near peak speed of
100BaseT for large messages. Apple’s Power Mac
G5 hardware also comes with built-in Gbit Ether-
net ports. On current hardware using a crossover
Ethernet cable, the Open Transport implementa-
tion’s latency is longer than MacMPI_S’s, but both
achieve more than 100 Mbytes/s bandwidth.

MacMPI is a source-code library that users can
integrate into their executables. It forms a wrapper
library for MPI code written in Fortran and C that
assumes that just the fundamental preinstalled op-
erating system is present. MacMPI takes advantage
of as much of the operating system as possible to
minimize its size and complexity. We’ve used this
library on hardware normally not designated for
cluster operation and configured it in virtually
every possible configuration.

The Pooch Application
Pooch is a parallel computing and cluster manage-
ment tool that can organize a job’s files into subdi-
rectories on other nodes and retrieve files on those
nodes containing output from completed jobs. It
can queue jobs and launch them only when certain
conditions are met. It also has the ability to kill run-
ning, launching, or queued jobs. It can also exploit
machines on which no one is logged in.

Pooch supports a wide variety of parallel pro-
gramming environments, enabled by the conver-
gence of technologies in OS X: Carbon, Cocoa,

Figure 3. MPI modifications. The MacMPI monitor
window keeps track of statistics about the execution
of parallel applications.
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Mach-O, Unix shell scripts, and AppleScripts. As
of this writing, Pooch supports five different MPIs:
MacMPI, mpich, MPI/Pro, mpich-gm (for
Myrinet hardware), and LAM/MPI (see http://
daugerresearch.com/pooch/mpi.html).

Pooch also features four user interfaces. In addi-
tion to its drag-and-drop GUI, Pooch’s AppleScript
interface makes it possible to write automatic and in-
teractive scripts that perform customized job queu-
ing and other cluster operations. A suite of com-
mand-line utilities makes it easy for users to log in
from other platforms and control cluster operations. 

Additionally, by sending commands through in-
terapplication messages called AppleEvents, other
applications can directly control Pooch to perform
Grid-like behavior. The Fresnel Diffraction Ex-
plorer (FDE), an optics parallel desktop application,
can initiate its own utilization of a local cluster via
Pooch. Although the current incarnation of Globus
(www.globus.org) and related technologies combine
resources on a supercomputer level, our technology
combines desktop machines. Unlike Globus and
Condor (www.cs.wisc.edu/condor/), these features
are installed, configured, and run by using an acces-
sible GUI. With only a menu selection, desktop ap-
plications such as FDE today can automatically take
advantage of resources elsewhere on the cluster.
Such powerful yet easy-to-use features are essential
for parallel computing to become mainstream.

Mac cluster security consists of administrative do-
mains. Each copy of Pooch is hard-coded to a 512-
bit encryption key that rotates for each encoded
command sent and received; the way it rotates is
unique to a particular user or group of Mac cluster
users. This approach is much like how a research
group shares access to office resources, such as a net-
work printer or a copy machine. The cluster can
similarly be shared, which enables it to operate in-
dependently of password databases or other external
security systems. At the same time, the convenience
for users is that the cluster is accessible when they
open Pooch, making it very easy for them to use the
cluster. Pooch makes little distinction between users
and administrators because current administrative
needs are so minor. A recently introduced bifurca-
tion called Pooch Pro introduces user login and hi-
erarchy, CPU quotas, and other supercomputer-like
administrative features to Mac clustering.

Pooch can also include nodes on almost any sub-
net of the Internet. We’ve exercised that capability
many times, either initiating jobs on our cluster
from home or by combining nodes at arbitrary dis-
tances. We’ve even used Pooch to combine nodes
at UCLA with machines in Munich, Germany,
10,000 km away.

Distinctions from Other Implementations
Several fundamental differences exist between our
approach to cluster computing and that of others.

Division of API and launching mechanism. A fun-
damental difference from most other cluster
types is the clear distinction and separation
between the code that performs internode com-
munications for the job and the code that
performs job initiation and other cluster man-
agement. In most MPI implementations, such as
mpich and LAM, these tasks are merged in one
package. Only recently has work begun on ver-
sions whose organization identifies distinctions
between these tasks, such as the emerging
MPICH2 rewrite of mpich (http://www
-unix.mcs.anl.gov/mpi/mpich2/).

No modification to the operating system. Making
no modifications to the operating system let us
simplify much of our software design. We didn’t
even add a runtime-linked library on the system,
much less the system-level or even kernel-level
modifications other cluster implementations
make. We took this approach so that parallel ex-
ecutables could run on any node regardless of
such modifications. We added as little as possi-
ble to the system by adding only one extra piece
of executable code, Pooch, to run and operate
the cluster. This approach keeps installation time
to a minimum, which helps satisfy our design
goals with regards to cluster setup.

No static data. All Pooch operations exclusively
use dynamically determined information. Pooch,
therefore, doesn’t require an administrator to
maintain any static data files about the cluster.
On OS X 10.2 and later, Pooch’s node discovery
implementation uses the Service Location Pro-
tocol and Apple’s Rendezvous (also called Zero-
Conf, www.zeroconf.org) simultaneously
(http://developer.apple.com/macosx/ren-
dezvous). These TCP/IP-based discovery ser-
vices provide Pooch with the information
needed by MacMPI to organize and set up the
internode connections for the parallel job.

Minimal assumptions about configuration. The ab-
sence of further configuration details about the
cluster expresses how reliably it tolerates varia-
tions in configuration while interfacing and
operating with hardware and software. The
hardware need not be identical, command-line
login isn’t needed, network interfaces can vary,
and computing hardware can differ. Again, as far
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as the platform is concerned, Pooch and
MacMPI are categorized as just application
code. When we run demonstrations, we often
ask the audience to volunteer their computers to
add to the Mac cluster. It still runs despite the
wide variety in configuration of these volun-
teered machines. This design has many implica-
tions for the mainstream because most end users
don’t want to worry about such details.

Minimal centralization. A common philosophy
used to increase the performance of parallel codes
is to eliminate bottlenecks. We’ve extended this
concept to the Mac cluster by minimizing cen-
tralization such as single points of failure or other
bottlenecks. Many Linux clusters assume some
sort of shared storage is fully configured and op-
erational before distributing executables or data
files, but this is a well-known point of failure. Our
cluster approach doesn’t use shared storage, thus
eliminating the potential for a bottleneck. Finally,
Mac clusters don’t have a head node, at least not
in the sense of the head node found in typical
Linux-based clusters. There is no permanent con-
trolling unit or units, so the behavior is much
more peer to peer. A node is designated node zero
for the duration of the job only, but any node can
be node zero for the next job and more than one
node can be designated node zero simultaneously.
All nodes can act as temporary head nodes, a tran-
sient state that occurs only during the brief sec-
onds of the launch process.

Real-World Experience
The Mac cluster’s performance is excellent for cer-
tain classes of problems, mainly those in which
communication is small compared to the calcula-
tion, yet the message packet size is large. In 2002,
for example, Apple introduced the Xserve, a rack-
mounted version of a Power Mac meant for server
solutions. In collaboration with the Applied Clus-
ter Computing Group at NASA’s Jet Propulsion
Laboratory, the AltiVec Fractal Carbon demo
achieved over 217 Gflops on its 33-XServe dual-
processor G4/1000 cluster. (For further details, see
http://daugerresearch.com/fractaldemos/JPLX
Serves/JPLXServeClusterBenchmark.html.)

The University of Southern California gave our
team the opportunity to run the Fractal demo and
Pooch on 56 of its dual-processor Power Mac
G4/533’s plus 20 of its dual-processor Power Mac
G4/450’s, where we achieved more than 233 Gflops.
(For further details, see http://daugerresearch.
com/fractaldemos/USCCluster/USCMacCluster-
Benchmark.html.) Note that these machines were

part of the Language Arts undergraduate computer
lab and weren’t meant for cluster work, yet they
achieved supercomputer-level results. The latest
version of our software operates on unused, logged-
out machines of this sort of computer lab.

We built a new cluster, called the Dawson clus-
ter, in 2004 out of 128 dual-processor Xserves us-
ing the PowerPC 970FX (“G5”) processor. Con-
nected via a gigabit network and managed by
UCLA’s Academic Technical Services, this cluster
achieved 1.21 TFlops using the AltiVec Fractal
benchmark and Pooch. (For further details, see
http://daugerresearch.com/fractaldemos/Dawson-
Cluster/DawsonCluster128Benchmark.html.) It
achieved a similar result using Linpack, placing the
Dawson cluster in the Top500 list. Our group is ac-
tively using the Dawson cluster for physics re-
search, and we hope to extend the machine to 256
Xserves (512 processors) in the coming year. 

As an example of performance specific to our
physics research, we successfully ran a 127 million
particle 3D electrostatic PIC simulation on a four-
node Macintosh G4/1000 dual-processor cluster.4,5

The total time was 17.6 seconds per time step, with
a 128 � 128 � 256 grid, and the cost of the ma-
chines was less than US$10,000. Just a decade ago,
such calculations required the world’s largest and
most expensive supercomputers!

Pictured in Figure 4, our inexpensive and pow-
erful cluster of Power Mac G3s, G4s, and G5s has
become a valuable addition to our UCLA Plasma
Physics Group. We use it to introduce new mem-
bers to parallel computing and run large calcula-
tions for extended periods. The solution we’ve
found is fairly unique in that half of the nodes aren’t
dedicated for parallel computing. We regularly
purchase high-end Macs and devote them for com-
putation, reassigning the older, slower Macs for in-
dividual (desktop) use and data storage. This reuse
of Macs in the cluster makes for a very cost-effec-
tive solution that satisfies both our parallel com-
puting and desktop computing needs.

In addition, the cluster’s flexibility lets us redirect
computational resources very quickly within our
group, which is useful for unfunded research or ex-
ploratory projects so that we can better prepare for
an official proposal later. If one investigator needs
to meet a short deadline, he or she can ask the re-
search group, borrow their desktop Macs, and
combine them with the dedicated Macs for one
large job or many smaller ones. 

The cluster’s presence has encouraged new
members of our group and visitors to learn how to
write portable parallel MPI programs, which they
can run later on larger computers elsewhere. The
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cluster also encourages a more interactive style of
parallel programming, in contrast to the batch-ori-
ented processing encouraged by most other cluster
types. We can also display on desktop machines the
results of calculations made elsewhere in the clus-
ter, which lets us study a simulation part way
through the calculation. Checking for mistakes
early on saves a great deal of computation time that
might otherwise be wasted.

Plasma Physics and 
Additional Applications
The particle-in-cell (PIC) codes we use in our
group are also used in several other high-perfor-
mance computing projects, such as modeling fu-
sion reactors6 and advanced accelerators.7 Such
projects require massively parallel computers, but
we’ve found it very convenient to perform research
projects on more modest and user-friendly parallel
machines such as those in Mac clusters.

Recent calculations by James Kniep and Jean-Noel
Leboeuf have concentrated on studying various
mechanisms of turbulence suppression in devices
such as the Electric Tokamak at UCLA8 and the
DIII-D tokamak at General Atomics.9 The re-
searchers involved in these projects use the Mac clus-
ter for smaller problems when they need fast turn-
around for quick scoping, as well as for the
production calculations that 8-node subsets of our
cluster can accommodate. Their results compare fa-
vorably to experimental observations of plasma mi-
croturbulence characteristics in DIII-D discharges.10

We’ve also been highly successful in applying the
cluster’s computational power to the classroom envi-
ronment, but the experience serendipitously led to a
plasma physics conference presentation. At UCLA,
the Physics 260 course entitled “Exploring Plasmas
Using Computer Models” is a computational plasma
physics course in which students learn about plasmas
and operate and analyze data from a plasma physics
code. The professor assigned the cluster for the stu-
dents’ course work with Parsec, a 3D fully electro-
magnetic particle-in-cell code that John Tonge wrote
for investigating the physics of plasma confinement
in a levitated internal conductor device. Some of the
runs contained as many as 50 million particles on up
to a 256 � 256 � 128 grid. Such assignments would
have been impossible without the local cluster. The
runs could be started at the end of class on one day,
and the output could be retrieved for analysis at the
next class meeting—an impossibility at supercom-
puting centers because of their large queues and run-
time limitations. The student work even led to an
academic contribution to the field.11

Recently, John Huelsenbeck (University of Cal-

ifornia, San Diego) and Fredrik Ronquist (Uppsala
University) wrote and released pMrBayes, a paral-
lel application that performs Bayesian estimates of
phylogeny for biology. While discussing ap-
proaches for running their parallel code, they de-
scribed the simplest method was “to use Dauger’s
program Pooch to control the jobs” (http://
morphbank.ebc.uu.se/mrbayes3/).

Our approach is unique because,
while other solutions seem to direct
little, if any, attention to usability,
tolerance to variations in configura-

tion, and reliability outside tightly controlled
conditions, we find such issues to be as impor-
tant as raw performance. We believe the ultimate
vision of parallel computing is technology so re-
liable and trivial to install, configure, and use
that the user will barely be aware that computa-
tions are occurring in parallel.

We organize problems with using parallel com-
puters into two categories: one, building, operating,
managing, and maintaining such a machine, and
two, determining how best to solve an application
on that machine. We’ve described how our work
solves the former so that users can maximize their
energy on the latter. The simplicity of using a Mac
cluster technology makes it a highly effective solu-

Figure 4. A portion of our Mac cluster. The cluster in the Department of
Physics at the University of California, Los Angeles, features a mix of
Power Mac G5s and their predecessors. It routinely combines dedicated
nodes with desktop machines to perform physics calculations.
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tion of all but the largest calculations, and we’re
continuing to improve on our work for the sake of
those users and to respond to their feedback. We’re
partnering with industry and other entities to en-
able shrink-wrapped applications of clusters. Our
next step is to expand the cluster to incorporate ad-
ditional Grid-like and supercomputing features and
further enhance its service to users.  
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